

www.gdllaw.com

John Patrick Brown, Jr., Esq. jpb@gdllaw.com Lyle M. Blanchard, Esq. lmb@gdllaw.com

June15, 2023

BY IZIS

Mr. Anthony J. Hood, Chairman D.C. Zoning Commission One Judiciary Square 441 4th Street, N.W., Second Floor Washington, D.C. 20001

Re: Zoning Commission Case No. 23-08

Application of The Wesley Theological Seminary of the United Methodist Church for a First-Stage and Consolidated PUD 4500 Massachusetts Avenue, N.W.

Square 1600, Lots 6 (818 and 819), 7, 8 and 9.

Dear Chairman Hood and Members of the Commission:

On behalf of Wesley Seminary, the applicant in the above-referenced case ("Applicant"), please accept this letter and accompanying information as its pre-hearing submission in support of the applications for a first-stage and consolidated PUD in compliance with the requirements of 11-Z DCMR § 401. On May 25, 2023, the Zoning Commission ("Commission") voted to schedule a hearing on the application, based on the materials submitted by the Applicant and the positive recommendation of the Office of Planning (Exhibit 11 to the record).

- 1. <u>List of Witnesses Prepared to Testify on Behalf of the Applicant (11-Z DCMR §401.l(b) and (c))</u>. In addition to the presentation by Applicant's counsel, the following witnesses will appear on behalf of the Applicant:
 - Rev. David McAllister-Wilson President, The Wesley Seminary.
 - Eric Leath Director of Development, Landmark Properties.
 - Jack Boarman, AIA, NCARB, CID Partner-In-Charge, BKV Group.
 - Stephen C. Karcha, Certified CM, LEED AP, GRP Vice-President of Construction and Project Management, Advanced Project Management, Inc.
 - Brandice Elliott Director of Planning Services, Holland & Knight.
 - Will Zeid, PE Senior Associate, Project Manager, Grove Slade, Transportation Consultants.

www.gdllaw.com

Mr. Anthony J. Hood, Chairman June 15, 2023 Page 2 of 4

Messrs. Boarman (Architecture), Karcha (Project Development, Construction Management), Zeid (Transportation Planning) and Ms. Elliot (Zoning, Comprehensive Plan, Racial Equity) will be offered as expert witnesses in their respective fields. Each person has previously been accepted as an expert witness by the Zoning Commission and/or Board of Zoning Adjustment.

A summary of the witnesses' testimony and expert resumes are included as <u>Exhibit A</u> to this submission, pursuant to 11-Z DCMR § 401.l(c).

2. Additional Information Introduced by the Applicant (11-Z DCMR \S 401.1(d)).

The updated architectural plans submitted herewith include an updated plan showing the affordable units to be included in the new dorm.

- 3. <u>Reduced Plan Sheets (11-Z DCMR § 401.1(e))</u>. Previously submitted in the record as Exhibits G1-7.
- 4. <u>List of Maps, Plans, or Other Documents Readily Available That May be Offered into Evidence (11-Z DCMR § 401.1</u>. No additional materials at this time beyond materials already submitted in the record as <u>Exhibit 3D</u> and this Prehearing Submission.
- 5. <u>Estimated Time Required for Presentation of the Applicant's Case (11-Z DCMR § 401.l(g))</u>. The Applicant estimates it will require one (1) hour to present its case.
- 6. <u>Names and Addresses of Property Owners within 200 feet of the Property (11-Z DCMR § 403.l(a))</u>. Please see <u>Exhibit 3C</u> in the record.
- 7. Names and Addresses of Each Person Having a Lease with the Owner for All or Part of Any Building Located on the Property (11-Z DCMR § 401.3(b)).

 N/A, there are no such leases.
- 8. <u>Transportation Memorandum Prepared by the Traffic Consultant, if any (11-Z DCMR § 401.8)</u>. Comprehensive Transportation Review and TDM and PMP memorandum prepared by Gorove-Slade, attached as Exhibit B.
- 9. The Form 116 Hearing Fee Calculator with the amount due of \$21,640,00 is attached. Please provide the link for online payment of the hearing fee.

www.gdllaw.com

Mr. Anthony J. Hood, Chairman June 15, 2023 Page 3 of 4

We look forward to the Commission's consideration of this application at the next available hearing date.

Very truly yours,

GREENSTEIN DELORME & LUCHS, P.C.

John Patrick Brown, Jr.

Lyle M. Blanchard

Enclosures

CERTIFICATE OF SERVICE

I hereby certify that on June 15, 2023, the foregoing letter and attachments was delivered via electronic mail to the following:

Ms. Jennifer Steingasser
Mr. Joel Lawson
Mr. Stephen Cochran
D.C. Office of Planning
1100 4th Street, SW
Suite E650
Washington, D.C. 20024
Jennifer.steingasser@dc.gov
joel.lawson@dc.gov
stephen.cochran@dc.gov

Mr. Aaron Zimmerman

D.C. Department of Transportation 55 M Street, SE, Suite 400 Washington, D.C. 20003 aaron.zimmerman@dc.gov

ANC 3D

3D@anc.dc.gov

Ms. Tricia Duncan, Chair, ANC 3D 3D02@anc.dc.gov

Mr. Chuck Elkins, ANC 3D01 3D01@anc.dc.gov

ANC 3E

3E@anc.dc.gov

Mr. Jonathan Bender, Chair, ANC 3E jonbender@gmail.com

Commissioner Ali Gianinno, ANC 3E06 3E06@anc.dc.gov

Commissioner Amy Hall, ANC 3E02 3E02@anc.dc.gov

Mr. Diego Carney, ANC 3E07 3E07@anc.dc.gov

Mr. Rohin Ghosh, ANC 3E08 3E08@anc.dc.gov

William Clarkson

Spring Valley Neighborhood Association wclarksonv@gmail.com

Dennis Paul

Neighbors for a Livable Community dennis.paul@verizon.net

William F. Krebs

Spring Valley-Wesley Heights Citizens Association w_krebs@msn.com

BEFORE THE ZONING COMMISSION OF THE DISTRICT OF COLUMBIA

FORM 116 – HEARING FEE CALCULATOR

Pursuant to Subtitle Z, Chapter 16, the following hearing fees shall be paid when the Zoning Commission schedules a public hearing on a petition or application. In the case of a petition or application combining two (2) or more actions on this form, the fee charged shall be the <u>greatest</u> of all the fees computed separately. Please show ALL computations.

A department, office, or agency of the Government of the District of Columbia is not required to pay a hearing fee where the property is owned by the agency and the property is to be occupied for a government building or use.

MAP AMENDMENT

Pursuant to Subtitle Z § 1601.1, if the Commission schedules a public hearing on a petition or application for an amendment to the Zoning Map, prior to advertisement of the hearing, the petitioner/applicant shall pay a hearing fee in accordance with the following schedule:

Petition or Application for Rezoning to any:	Unit	Fee	Quantity	Total
R-1 through R-3, R-6 through R-17, or R-19 through R-21 zone	43,560 sq. ft. or part of that area	\$ 650		
RF-1 through RF-3 zone and RA-1 or RA-6	43,560 sq. ft. or part of that area	\$1,625		
RA-2, RA-7, RA-8, or RC-1	43,560 sq. ft. or part of that area	\$3,250		
RA-3 through RA-5, RA-9, RA-10, D-1-R, SEFC-2, SEFC-3, or CG-1 zone	43,560 sq. ft. or part of that area	\$6,500		
MU-1, MU-2, MU-10 through MU-16, MU-22, MU-23, MU-29, D-2, SEFC-1, SEFC-4, CG-4 through CG-7, and ARTS-4 zone	10,000 sq. ft. or part of that area	\$2,600		
MU-3 through MU-6, MU-17 through MU-19, MU-24 through MU-27, NC-1 through NC-5, NC-7, NC-9 through NC-11, NC-14, NC-16, NC-17, D-4-R, CG-2, ARTS-1, ARTS-2, RC-2 and RC-3 zone	10,000 sq. ft. or part of that area	\$1,625		
MU-7 through MU-9, MU-20, MU-21, MU-28, NC-6, NC-8, NC-12, NC-13, NC-15, D-3 through D-5, D-5-R, D-6-R, D-7, D-8, CG-3, and ARTS-3 zone	10,000 sq. ft. or part of that area	\$3,250		
PDR-1 through PDR-7 zone	20,000 sq. ft. or part of that area	\$2,600		

TOTAL

Notes:

- The maximum hearing fee for rezoning to any Residence District (R, RF, RA, D-1-R, SEFC-2,SEFC-3 or CG-1) is \$65,000.
- For an application that proposes rezoning to more than one (1) zone district or is in the alternative, the fee shall be the total of the amounts for the area devoted to each proposed district or alternative computed separately.
- A "part of an acre" or "part of that area" should be rounded to the next whole number.

TEXT AMENDMENT

Pursuant to § Subtitle Z § 1601.3, if the Commission schedules a public hearing on a petition for an amendment to the text of the Zoning Regulations, prior to the advertisement of the hearing, the petitioner shall pay a hearing fee in accordance with the following schedule:

Petition Fee		Quantity	Total
Each section proposed to be added, deleted, or amended (Maximum of \$1,300)	\$325.00		
TOTAL			

FORM 116 – HEARING FEE CALCULATOR – Side 2

PLANNED UNIT DEVELOPMENT (PUD) OR AIR SPACE DEVELOPMENT

Pursuant to Subtitle Z § 1601.4 if the Commission schedules a public hearing on an application for approval of a planned unit development or air space development, prior to the advertisement of the hearing, the applicant shall pay a hearing fee in accordance with the following schedule:

Application	Fee	Quantity	Total
For each 100 sq. ft. of gross floor area (GFA), or part thereof, included in the application devoted to dwelling units, and the immediate area needed to serve that dwelling unit (Maximum of \$65,000.)	\$7.00	2,993	\$20,951.00
For each 100 sq. ft. of GFA, or part thereof, included in the application devoted to any use other than a dwelling unit and the immediate area needed to serve that dwelling unit	\$13.00	53	\$689.00
TOTAL			\$21,640,00

Notes: • There is no charge for the hearing on the second-stage of a two-stage PUD application

• A "part thereof" should be rounded to the next whole number.

MODIFICATION TO AN APPROVED PUD OR AIR SPACE DEVELOPMENT

Pursuant to Subtitle Z § 1601.6, if the Commission schedules a public hearing on an application for a modification to an approved planned unit development, air space development, or any other review of a specific site or building plan, prior to the advertisement of the hearing, the applicant shall pay a hearing fee in accordance with the following schedule:

Request for Modification	Fee	Total
Modification to a previously approved case	26% of original hearing fee or \$1,300, whichever is greater	
TOTAL		

APPLICATION/ FEE OF PETITION

Pursuant to Subtitle Z § 1601.5, in the case of a petition or application combining two (2) or more actions on this form, the fee charged shall be the <u>greatest</u> of all the fees computed separately. Below, please list the total fee for each action requested and enter the fee of the <u>greatest</u> fee calculated.

Type of Petition/Application	Total
Map Amendment	
Text Amendment	
PUD/Air Space Development	
Modification to an approved PUD or Air Space Development	
GREATEST OF CALCULATED FEES	

CERTIFICATION

I/We certify that the information on this form is true and correct to the best of my/our knowledge, information and belief.

Any person(s) using a fictitious name or address and/or knowingly making any false statement on this application/petition is in violation of D.C. Law and subject to a fine of not more than \$1,000 or 180 days imprisonment or both.

(D.C. Official Code § 22-2405)

Name: John Patrick Brown, Jr. Signature: Date: 6/15/2023

If you need a reasonable accommodation for a disability under the Americans with Disabilities Act (ADA) or Fair Housing Act, please complete a Form 155 - Request for Reasonable Accommodation.

EXHIBIT "A"

EXHIBIT A

Outline of Witness Testimony

	I.	David McAllister-Wilson,	The Wesley	y Seminary	Į
--	----	--------------------------	------------	------------	---

- **A.** Wesley Seminary: Past, Present and Future
- **B.** Thrive in Place to Further Education Mission
- **C.** Wesley's Contribution to City, Diversity and Equity
- **D.** Vital Role of Community Engagement with our Neighbors, ANCs, CLC

II. Eric Leath, Landmark Properties

- **A.** Introduction to Landmark Properties
- **B.** Purpose Built Student Housing
- C. Operation of New Dormitory
- **D.** Implementation of Inclusionary Zoning

III. Jack Boarman, BKV Group

- **A.** New Dormitory Design and Features
- **B.** Purpose Built Student Housing
- **C.** Project Revisions
- **D.** Allocation of Inclusionary Units
- E. Sustainability
- F. Landscaping

IV. Steve C. Karcha, Advanced Project Management, Inc.

- **A.** Wesley Campus
- **B.** Demolition of Buildings
- C. New Administration and Maintenance Building
- **D.** Green Open Space/Landscaping
- **E.** Playground
- **F.** Sidewalk and Public Space Improvements
- G. Construction Management with Community Participation

V. Brandice Elliott, Holland & Knight

- **A.** Standard of Review
- **B.** Racial Equity Analysis
- C. Consistency with IZ Requirements

VI. Will Zeid, Grove Slade

- **A.** Comprehensive Transportation Review
- **B.** Transportation Demand Management
- C. Performance Monitoring Plan

JACK OWEN BOARMAN, AIA, NCARB, CID

PARTNER-IN-CHARGE

Jack brings over 44 years of experience in the design of residential developments, corporate, government and academic facilities. Since founding the firm in 1978, Jack has led the firm's team design approach in the development of quality architecture across the country. He has expanded the design practice for planning, programming and design of urban redevelopment projects and historic renovations.

EDUCATION // Bachelor of Architecture with Distinction, University of Minnesota

YEARS OF EXPERIENCE // 44

REGISTRATIONS // Professional Architect: DC# 101622, MD #16180, MN #11682, IL #001017467, SD #4926, WI #6144, IA #2153, AZ #20740, NY #018772, CID# C00659, AIA Member # 30022509, NCARB #26798

PROFESSIONAL AFFILIATIONS // American Institute of Architects (AIA), Minneapolis Chapter, Minneapolis Chapter President, 1998; Minneapolis Chamber of Commerce; Minneapolis Downtown Council; Urban Land Institute; Lambda Alpha

RELEVANT EXPERIENCE

Crystal Towers, Dweck, Arlington, VA Urban Atlantic-Walter Reed Site QRS-Wash-DC

1801 E Main-Richmond, VA- 225,000 square feet, 221 units, with 5,000 square feet of retail and 110 structured parking spaces

Piazza Terminal, Philadelphia, PA

- Multifamily, Market-rate, New Construction, 937,000 SF, 13 stories, 951-unit, 513 parking spaces (5% are dedicated for green vehicles), In **Progress**

Broad and Washington, Philadelphia, PA - Market-rate, Mixed-use, Multifamily, In Progress

CastleRock, GMU Prince Williams Bldg C, Prince Williams County, VA student housing, 3 Buildings Building A 197 Units, Building B 170 Units, Building C 155 Units

Brewers Hill, Greystar, Baltimore, MD - Market-rate, Multifamily, 500-unit, In **Progress**

Dominium-Bluffs Pkwy Senior-Canton-

City Club Apartments Midtown Detroit, CCA, Detroit, MI - Market-rate, 16-, 6-story structures, 357 units, 30,000 SF retail space, 250 below-grade parking

Harwood Flats, Foulger Pratt & Promark Real Estate Services, Kensington, MD

- Project manager for the design and construction of a mixed use, 614-unit, development. 549,771 GSF, 28,000 SF

Cotton Annex, Douglas Development, Washington, DC- Adaptive reuse of the landmarked 90,000 square foot Cotton Annex, with an additional 400,000 square feet of new construction. 610 total units

Artspace Silver Spring Arts Campus, Montgomery County and Artspace, Silver Spring, MD - affordable, addition & renovation, 68 live/work artist studios, 11 townhouses

Beckert's Park, Foulger-Pratt, Washington, DC - Multifamily, Mixed Use, 5-story, 327-unit, 60,000 SF

Center City District, Landmark on Grand River / Newman Lofts, East **Lansing, MI -** Multifamily, Mixed-Use, Student Housing, New Construction, 2-Towers, 96-Active Adult Units, 289-Student Housing Unit

âme (Meridian Hill Hall), Jair Lynch, Washington, DC - Multifamily, Adaptive Reuse, Historic Renovation, 8-story, 206-unit, 187,586 SF, \$37M estimated

The Aspen, Ellisdale, Washington,

DC - Multifamily, Mixed Use, New Construction, 10-story, 133-unit, 88,310 SF housing, 5,890 SF retail, \$18.7M

(Mai Place) 1400 14th Street NW, Abdo Development, Washington,

DC - mixed use, corporate, new construction, 4-story, 30-unit, 46,394 SF housing, 13,866 SF retail, \$11.7M

New Carrollton Mixed Use Development Phase II, Urban Atlantic, New Carrollton, MD- mixed use, 5-story, 291-unit, 327,201 SF

The District (Riverfront Landings), Pittsburgh, PA - market rate, 2 buildings, 5 stories residential, 1 story amenities, 425 total units, 648,000 SF

Morrow Park City Apartments, Village Green Companies, Pittsburgh, PA market-rate, new construction, 213unit, 273,093 SF, \$37.3M

The Vintage, Valor Development, Washington, DC – Multifamily, Addition & Historic Renovation, 85-unit, 63,525 SF, \$9.8M

Advanced Project Management, Inc.

Stephen C. Karcha, VP of Project CM

CERTIFIED CM, LEED AP, GRP

Title

Vice President Project and Construction Management, 36 years' experience; 25 years with APM

Education

B.S. Civil Engineering Technology, Old Dominion University A.S. Construction Management, Northern Virginia Community College

Designations

(CCM) Certified Construction Manager (GRP) Accredited Green Roof Professional (LEED AP) LEED Professional Accreditation

Professional Affiliations

Construction Management Association of America

Green Roofs for Healthy Cities
U.S. Green Building Council
American Society of Civil Engineers
International Code Council
National Fire Protection Association
Engineer-In-Training (EIT), VA

As the VP of Project and Construction Management, Stephen is a key cornerstone of the APM team. His extensive experience in construction project management, general contracting, civil engineering, and zoning brings an expansive view to all areas of the development process.

Stephen's leadership encourages an open and creative exploration of ways to overcome the challenges encountered by the entire project team in preconstruction, construction, and preoccupancy

phases. He fosters and guides the project team and Ownership through the healthy tensions to achieve the goals of the project and lead to a successful outcome.

Recent Programs

Arlington Partnership For Affordable Housing 4 Projects \$70.89 Million Program

The Washington National Cathedral 5 Projects \$42.9 Million Program

YMCA of Metropolitan Washington 5 Projects \$41.8 Million Program

Goodwin House Incorporated 13 Projects \$192 Million Program

Episcopal High School 13 Projects \$86 Million Program

The Madeira School 8 projects \$71.1 Million Program

Wesley Theological Seminary 7 Projects \$28.5 Million Program

World Wildlife Fund, Inc. 7 Projects \$8.5 Million

Alexandria Housing Development Corporation 5 Projects \$264 Million Program

Gonzaga College High School 23 projects \$150.3 Million Program

> Flint Hill School 3 Projects \$34 Million Program

Peter Lawrence of Virginia 7 Projects \$51.2 Million Program

Vinson Hall Expansion 4 Projects \$87.9 Million Program

Sidwell Friends School 8 Projects \$113.7 Million Program

Falcons Landing 3 Projects \$45 Million Program

Virginia Theological Seminary 8 Projects 36.1 Million Program

"I appreciate a lot what APM has done to get us to this point. We would not be where we are without you" - Jonathan Frederick, President and CEO AHDC

"We were privileged to have you at the table with us; your experience, attention to detail, dedication and level head were a true benefit to the team.

- Brandon Ripley | Vice President, Construction Penzance

Holland & Knight

Brandice N. Elliott is the director of planning services in Holland & Knight's Washington, D.C., office and a member of the firm's Land Use and Government Team. Ms. Elliott works with the firm's nationally recognized development, land use and zoning attorneys to support clients as they acquire, plan and develop real estate projects.

Ms. Elliott has more than 15 years of experience providing detailed zoning, planning and design analysis to land use projects. She also has vast knowledge of land use, zoning, urban design and environmental regulatory compliance.

Prior to joining Holland & Knight, Ms. Elliott worked in the District of Columbia Office of Planning for 10 years, where she played a key role in the management of several development projects of varying size and complexity citywide. She worked with a broad coalition of development stakeholders and district agencies to negotiate planned unit developments (PUDs), map amendments, design review projects, text amendments, variances and special exceptions in order to provide recommendations aligned with district regulations, policies and priorities, and presented the analyses to the D.C. Zoning Commission and Board of Zoning Adjustment (BZA). Ms. Elliott also assisted in long-range planning efforts, including the Comprehensive Plan update and other small-area plan initiatives.

Ms. Elliott's experience also includes serving as a planner and deputy zoning administrator for the Town of Herndon, Virginia, where she oversaw the development of several projects, contributed to comprehensive plan area studies and coordinated advisory committees. Prior to that, Ms. Elliott spent several years in Mesa, Arizona, where she served as a zoning plans examiner, planner and code compliance officer.

Credentials

Education

- Arizona State University, MUEP, Master of Urban and Environmental Planning
- Arizona State University, B.A., Psychology, magna cum laude

Memberships

American Institute of Certified Planners (AICP)

BRANDICE N. ELLIOTT

PROFESSIONAL BACKGROUND

Brandice has extensive expertise in urban planning, land use, and zoning gained through over fifteen years of experience working in both public and private sectors. She is currently the Director of Planning Services at Holland & Knight LLP, Washington, DC office. Prior to that, Brandice was a Development Review Specialist with the D.C. Office of Planning (DCOP) for ten years. Her prior experience also includes serving as a Deputy Zoning Administrator, Zoning Plans Examiner, and Code Compliance Officer.

EXPERIENCE

DIRECTOR OF PLANNING SERVICES, HOLLAND & KNIGHT LLP

August 2022 - Present

- Prepares and manages developer applications for a variety of projects, including Planned Unit Developments (PUDs), zoning map amendments, zoning variances, and special exceptions.
- Assists clients with zoning entitlements and acquisition of building permits.
- Prepares testimony for zoning and land use planning to be provided to the D.C. Zoning Commission and Board of Zoning Adjustment.
- Advises clients on interpretation and application of development regulations and approval processes.
- Prepares detailed comprehensive plan, zoning, and land use analysis to advise client during property acquisition and entitlements.

DEVELOPMENT REVIEW SPECIALIST, DISTRICT OF COLUMBIA OFFICE OF PLANNING

September 2012 - August 2022

- Prepared analyses of complex project proposals to determine conformance with the Comprehensive Plan, Small Area Plans, Zoning Regulations, and other District policies.
- Provided subject matter expertise of District policies, development goals, processes, procedures, and standards as they related to the Agency.
- Regularly provided testimony to the D.C. Zoning Commission and Board of Adjustment regarding Office of Planning recommendations.
- Collaborated with Applicants and District Agencies to refine projects and reduce conflicts in the proposed design.

Projects: Managed several PUDs of varying complexity in the Florida Avenue Market Development with the goal of securing significant benefits and amenities, particularly affordable housing; Managed development proposals in Southeast Federal Center, which generally consisted of design review and text amendments that brought the Zoning Regulations in conformance with the Master Plan; and Served as subject matter expert in development of the Chevy Chase Small Area Plan.

PLANNER AND DEPUTY ZONING ADMINISTRATOR, TOWN OF HERNDON COMMUNITY DEVELOPMENT

November 2010 - September 2012

 Served as Planner and Deputy Zoning Administrator managing the Site Plan Review Process, ensuring that all requests complied with the Comprehensive Plan, Town Code, and Town policies.

- Coordinated the Pedestrian and Bicycle Advisory Committee, which provided input for the first Countywide Bicycle Transportation Plan, and presented regular updates at public information sessions and to the Town Council.
- Was the point of contact for matters concerning the Town Code and its consistency with federal Chesapeake Bay regulations.

Projects: Contributed to the first Fairfax County Bicycle Transportation Plan; Assisted with Comprehensive Plan Area Studies, including the Herndon Metrorail Study Area Plan and Downtown Herndon Area Plan.

PLANNER, TELERGY CONSULTING

September 2009 - November 2010

- Served as Planner obtaining entitlements for the development of telecommunication infrastructure.
- Coordinated public engagement, site research, city review processes, and city public hearing processes for approvals for the development of infrastructure.

CITY OF MESA, PLANNING DIVISION

PLANNER II AND CODE COMPLIANCE OFFICER (March 2010 - September 2010)

PLANNER I (December 2007 - January 2009)

ZONING PLANS EXAMINER (August 2005 - December 2007)

- Documented cases of zoning violation, provided notification to property owners, and provided assistance to correct the violation within a timely manner.
- Served as the Planner and primary contact for all requests requiring relief from the Zoning Regulations.
- Prepared analyses of project proposals to determine conformance with the Comprehensive Plan, Small Area Plans, Zoning Regulations, and other City policies.
- Provided subject matter expertise of City policies, development goals, processes, procedures, and standards as they related to the Agency.
- Regularly provided testimony to the Zoning Adjustment Hearing Officer and Board of Adjustment regarding Office of Planning recommendations.
- Collaborated with Applicants and City Agencies to refine projects and reduce conflicts in the proposal design.
- Coordinated permit reviews requiring zoning approvals and provided technical reviews of residential, commercial, and sign plans, verifying compliance with City Codes, Zoning Commission approvals, and Board of Zoning Adjustment approvals.

EDUCATION ARIZONA STATE UNIVERSITY

MUEP, Master of Urban and Environmental Planning

ARIZONA STATE UNIVERSITY

B.A., Psychology

CERTIFICATION American Institute of Certified Planners

William Zeid, PE

Senior Associate Project Manager

Will is a senior associate and project manager with over 12 years of experience in traffic, parking and transportation engineering and planning in the DC, Maryland and Virginia markets providing support for designing and entitling private and public development projects. He is responsible for managing projects in Washington, DC, Maryland, and Virginia. Will helped lead a public-private working group to update Montgomery County's 2022 Local Area Transportation Review (LATR) Guidelines to incorporate a cap on off-site improvement requirements.

Will has been qualified as an expert by the DC Board of Zoning Adjustment, the DC Zoning Commission, by numerous jurisdictions in Maryland and Virginia, and has been recognized as an expert witness by the Loudoun County Circuit Court.

He has experience with all types of projects including educational institutions, mixeduse developments, commercial and retail developments, office developments, and government facilities.

Will's project experience covers the full spectrum of land-use and includes:

Residential

7 New York Avenue NE BZA, Washington DC
CSX West - WC Smith, Washington, DC
Takoma Metro Multifamily Development, Washington, DC
Decoverly Dr at Crown Park AWSC, Gaithersburg, MD
Reed Street PUD, Washington, DC
3000 M Street NW – PUD, Washington, DC
3220 Prospect Street, Washington, DC
4618 14th Street NW PUD, Washington, DC
3427 Wisconsin Avenue NW Map Amend App
2229 M St NE PUD, Washington, DC
Broadlands Section 104 Residential, Loudoun County, VA

Mixed-Use Development

1250 U Street NW Redevelopment, Washington, DC Shady Grove Innovation District, City of Rockville, MD MRP Steuart Buzzard Point Phase 1, Washington, DC Square 669-670, Washington, DC Federal Plaza Shopping Center, Rockville, MD Smithsonian Institution – Revitalization, Washington, DC Yards Parcel Q, Washington, DC 1301 S Capitol Street, Washington, DC 5425 Wisconsin Avenue, Chevy Chase, MD Friendship Center, Washington, DC Olde Ashburn Center, Ashburn, VA 15930 Frederick Road - Lidl Derwood, Gaithersburg, MD

Education

Bachelor of Science, Civil Engineering, University of Idaho

Professional Registrations

Maryland: No. 49415 District of Columbia: No. PE921523 Indiana: No. PE12000640

Professional Associations

Maryland Society of Professional Engineers (MDSPE) National Association of Industrial and Office Properties (NAIOP) Urban Land Institute (ULI)

Experience

12 years total2 years with Gorove Slade

Location

Washington, DC

GOROVESLADE.COM 1

Federal, State, and Municipal Government

2406 Massachusetts Avenue NW, Washington, DC

Primary and Secondary Schools

Dorothy Heights Elementary School, Washington, DC Ft. Lincoln / Hagans Recreation Center, Washington, DC Raymond Elementary School, Washington, DC Aiton School, Washington, DC Washington Latin Public Charter School, Washington, DC Truesdell Education Campus, Washington, DC Kenilworth Elementary School, Washington, DC

Office

WMATA Square 487 - 600 5th Street NW, Washington, DC 14 Firstfield Road Development, Gaithersburg, MD Rockville Corporate Center, City of Rockville, MD Redland Corporate Center, City of Rockville, MD

Other

Wesley Theological Seminary, Washington, DC
4.5 Street Alley 2-Way/1-Way Conversion
405 S Frederick Road – Wawa, Gaithersburg, MD
Glymont Gas Station, Indian Head, MD
MLK Gateway Phase II, Washington, DC
Ivy City Valet Traffic Flow Chart, Washington, DC
Broadlands 204 North Parking Study, Loudoun County, VA

GOROVESLADE.COM 2

EXHIBIT "B"

TECHNICAL MEMORANDUM

To: Sayra Molina District Department of Transportation

Aaron Zimmerman From: Drew Ackermann

William Zeid, P.E. Erwin Andres, P.E.

Date: June 10, 2022

Subject: Wesley Campus Plan (ZC No. 22-13)

Transportation Demand Management (TDM) Plan and Performance Management Plan (PMP)

Introduction

This memorandum details the revised Transportation Demand Management (TDM) plan and a Performance Management Plan (PMP) for zoning case 22-13 - 4500 Massachusetts Avenue NW - Wesley Theological Seminary (WTS).

Transportation Demand Management (TDM) Plan

Transportation Demand Management (TDM) is the application of policies and strategies used to reduce travel demand or to redistribute demand to other times or spaces. TDM elements typically focus on reducing the demand of single-occupancy, private vehicles during peak period travel times or on shifting single-occupancy vehicular demand to off-peak periods.

The TDM plan for the proposed project is based on zoning regulations in addition to DDOT expectations for TDM programs for this type of use. As such, the applicant will implement the following TDM measures, at a minimum, applying to the Project and to the Wesley Campus Plan as a whole. The Applicant will explore other innovative TDM strategies and will coordinate the implementation of those strategies with goDCgo and DDOT's TDM Team.

- Unbundle the cost of vehicle parking from the lease for each residential unit and charge a minimum rate based on the
 average market rate within a quarter mile. Only monthly or by semester rates will be charged. Free parking,
 validation, or discounted rates will not be offered.
- Of the 350 parking spaces within the Project's garage, at least seven (7) will have electrical vehicle charging stations per DDOT's recommendation of one (1) charging station for every 50 parking spaces.
- Will work with American University to allow WTS students, faculty, and employees to use the AU shuttle to the Metrorail Station.
- Will fund and install an electronic screen displaying transit, shuttle, and bikeshare information in the lobby of the new building.
- Identify a Transportation Coordinator for the WTS campus. The Transportation Coordinator will act as a point of contact with DDOT, goDCgo, and Zoning Enforcement.
- Will provide Transportation Coordinator's contact information to goDCgo, conduct an annual commuter survey of employees on-site, and report TDM activities and data collection efforts to goDCgo once per year.
- Transportation Coordinator will develop, distribute, and market various transportation alternatives and options to the
 residents, including promoting transportation events (i.e., Bike to Work Day, National Walking Day, Car Free Day) on
 property website and in any internal building newsletters or communications.

- Transportation Coordinator will receive TDM training from goDCgo to learn about the transportation conditions for this project and available options for implementing the TDM Plan and PMP.
- Provide residents who wish to carpool with detailed carpooling information and will be referred to other carpool
 matching services sponsored by the Metropolitan Washington Council of Governments (MWCOG) or other
 comparable service if MWCOG does not offer this in the future.
- Will meet ZR16 long-term bicycle parking requirements by providing at least 62 long-term spaces free of charge to residents. At least 50% of long-term spaces (at least 31 spaces) will be located horizontally on the floor of the bike room. At least 10% of long-term spaces (at least 6 spaces) will be served by electrical outlets for e-bikes/scooters. At least 5% of long-term spaces (at least 3 spaces) will be designed to accommodate larger cargo/tandem bikes (10 feet by 3 feet size). Each bike storage room will include a repair station.
- Will meet ZR16 short-term bicycle parking requirements by providing 12 short-term spaces via exterior bike racks oncampus.
- Provide welcome packets to all new residents that should, at a minimum, include the Metrorail pocket guide, brochures of local bus lines (Circulator and Metrobus), carpool and vanpool information, CaBi coupon or rack card, Guaranteed Ride Home (GRH) brochure, and the most recent DC Bike Map. Brochures can be ordered from DDOT's goDCgo program by emailing info@godcgo.com.
- Transportation Coordinator will subscribe to goDCgo's residential newsletter.
- Post all TDM commitments on the WTS website and resident message board, publicize availability, and allow the
 public to see what commitments have been promised.
- Offer a free SmarTrip card to every new resident and a complimentary Capital Bikeshare coupon good for one ride.
- Prior to issuance of any certificate of occupancy for any new building, WTS will fund and construct the following pedestrian improvements:
 - A sidewalk along the east side of University Avenue NW between Massachusetts Avenue and Rodman Street,
 subject to DDOT approval, with a leadwalk into campus along at least one side of the site driveway;
 - Install signage, crosswalk and ADA curb ramps on the south leg of University Avenue at the Rodman Street intersection, subject to DDOT approval.
 - Install signage, crosswalk and ADA curb ramps on the east leg of the campus driveway at the University Avenue and Sedgwick Street intersection or construct the crossing as a continuous sidewalk, subject to DDOT approval; and
 - Install wayfinding signage on the Wesley Seminary campus directing students to the gated connection to the American University campus.

Performance Monitoring Plan (PMP)

This Performance Monitoring Plan (PMP) is Wesley Theological Seminary's plan to track progress towards its Transportation Demand Management (TDM) goals. The PMP is comprised of mode split surveys of students, internal WTS data, and manual counts of vehicle and bicycle parking inventory and occupancy which will be compiled into monitoring reports submitted to DDOT. The purpose of the monitoring reports is to make data-driven decisions about which TDM measures, if any, need to be adjusted to meet TDM goals.

Beginning the first spring semester following opening of the new dorm, monitoring will be performed, and reports will be prepared and submitted to DDOT annually until the trip goal has been met for two (2) consecutive years and then every other year for the duration of the term of the Campus Plan.

As detailed in the April 29, 2022 Comprehensive Transportation Review for the currently proposed campus plan, the proposed changes are expected to result in a net increase in vehicular trips of 14 additional morning peak hour trips and 31 additional afternoon peak hour trips. Thus, increasing the trip goal for the campus to 101 vehicle trips in either the weekday morning (AM) or weekday evening (PM) peak hours.

WTS will be considered in compliance with the PMP if the vehicle trip goal of 101 peak hour trips is met.

The monitoring reports will include details regarding the following:

- Count of the number of morning and afternoon peak hour vehicular trips arriving at and departing from the campus;
 - Morning Peak Hour: Highest 1-hour between 6:30 AM 9:30 AM
 - o Afternoon Peak Hour: Highest 1-hour between 4:00 PM 7:00 PM
 - Whether the campus is compliant with the PMP goals by generating no more than 101 peak hour vehicle trips during any of these periods.
- Survey to identify mode split, broken down by students and employees;
- Number of student, staff, and faculty parking permits issued;
- Student, staff, and faculty parking permit rates;
- Number of registered carpools;
- Number and location of any car-sharing spaces, alternative fuel vehicle parking spaces, carpool/vanpool spaces, and electric vehicle charging stations on campus;
- Inventory and occupancy of all on-site vehicular parking;
- Inventory and occupancy of long-term and short-term bicycle parking spaces; and
- Documentation of any changes to the overall transportation demand management (TDM) program from the previous
 year, including new or innovative policies being implemented but not explicitly required in the TDM plan agreed to
 during Zoning Commission approval.

This information will be collected using mode split surveys of students and employees, internal WTS data, and manual counts of vehicle and bicycle parking inventory and occupancy. Details regarding these data sources and collection techniques is provided below.

Data Collection and Mode Split Surveys

Data collection and surveys will occur on a typical weekday during the Spring semester when weather conditions are normal. A "typical" day is defined as a Tuesday, Wednesday, or Thursday when Wesley and American University classes are in session, during a week without holidays, and far enough into the school year that travel patterns are normalized.

Mode Split Surveys

WTS will conduct surveys of on-campus students and employees to determine mode splits of trips to campus, which will be included in the monitoring reports. Mode split surveys will be collected on a typical weekday when large, representative population samples can be found.

In order to have concrete, trackable year-to-year mode split data, it is recommended the phrasing of mode split survey questions include whether the respondent is a student or employee, and only ask for the travel mode the respondent used that day (not the mode they typically use according to memory). For ease of future analysis, it is recommended WTS keep the raw survey data, separated by students and employees, on file. It is recommended that the mode split survey questions be phrased as follows:

- 1. Are you a:
 - a. WTS Student
 - b. AU Student
 - c. Faculty
 - d. Full-time employee
 - e. Part-time employee
 - f. Contractor
 - a. Visitor
- 2. What transportation mode did you use for **most of** your trip to campus **today**?
 - a. Driving a car alone
 - b. Driving a car with passengers
 - c. As a passenger in a car
 - d. Carshare (Zipcar, Free2Move)
 - e. Motorcycle
 - f. AU Shuttle
 - g. Metrobus
 - h. Metrorail
 - i. Taxi
 - j. Rideshare (Uber, Lyft)
 - k. Bicycle (personal)
 - I. Scooter (personal)
 - m. Capital Bikeshare
 - Shared dockless e-scooter/bicycle (Lime, Bird, Jump, etc.)
 - o. Walk/run
 - p. Other: please specify

- 3. What transportation mode did you use for the last part of your trip to campus today?
 - a. Driving a car alone
 - b. Driving a car with passengers
 - c. As a passenger in a car
 - d. Carshare (Zipcar, Free2Move)
 - e. Motorcycle
 - f. AU Shuttle
 - g. Metrobus
 - h. Metrorail
 - i. Taxi
 - j. Rideshare (Uber, Lyft)
 - k. Bicycle (personal)
 - I. Scooter (personal)
 - m. Capital Bikeshare
 - n. Shared dockless e-scooter/bicycle (Lime, Bird, Jump, etc.)
 - o. Walk/run
 - p. Other: please specify

Internal University Data

WTS will collect the following internal data to be included in the monitoring reports:

- Number of student, staff, and faculty parking permits issued;
- Student, staff, and faculty parking permit rates;
- Number of registered carpools; and
- Number and location of any car-sharing spaces, alternative fuel vehicle parking spaces, carpool/vanpool spaces, and electric vehicle charging stations on campus; and
- Number and location of any showers and changing facilities available on campus for bicycle commuters.

Manual Parking Occupancy Counts

WTS will conduct manual counts of the following items to be included in the monitoring reports:

- Inventory and occupancy of all on-campus vehicular parking facilities;
- Inventory and occupancy of long-term and short-term bicycle parking spaces on campus; and
- These observations will be collected at the following intervals
 - o On the same day as the vehicular trip counts
 - At 7:00am, 11:00am, 3:00pm, and 7:00pm

Vehicular Trip Counts

WTS will conduct counts of vehicles arriving at and departing from the campus at all vehicular access locations during the morning and afternoon peak periods. The morning and afternoon peak hours will be used to assess compliance with the PMP.

- o Morning Peak Hour: Highest 1-hour between 6:30 AM 9:30 AM
- o Afternoon Peak Hour: Highest 1-hour between 4:00 PM 7:00 PM
- Whether the campus is compliant with the PMP goals by generating no more than 101 peak hour vehicle trips during any of these periods.

Comprehensive Transportation Review

Wesley Campus Plan

Washington, DC

April 29, 2022

Prepared by:

1140 Connecticut Ave NW 225 Reinekers Lane 4144 Legato Road 4951 Lake Brook Drive **Suite 1010** Suite 750 Suite 250 Suite 650 Washington, DC 20036 Alexandria, VA 22314 Fairfax, VA 22033 Glen Allen, VA 23060 T 202.296.8625 T 703.721.3044 T 703.787.9595 T 804.362.0578

www.goroveslade.com

This document, together with the concepts and designs presented herein, as an instrument of services, is intended for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization by Gorove/Slade Associates, Inc., shall be without liability to Gorove/Slade Associates, Inc.

CONTENTS

E	cecutive Summary	1
ln	troduction	4
	Purpose of Study	4
	Project Summary	4
	Study Contents	5
St	udy Area Overview	8
	Major Transportation Features	8
	Future Projects	10
Pı	oject Design	14
	Site Access and Circulation	14
	Loading and Trash	14
	Parking	15
	Bicycle Facilities	15
	Pedestrian Facilities	15
	Transportation Demand Management	15
Tı	avel Demand Assumptions	18
	Proposed Site Trip Generation	18
Tı	affic Operations	19
	Study Area, Scope, & Methodology	19
	Vehicular Analysis Results	24
	Mitigation Measures	25
Tı	ansit Facilities	46
	Existing Transit Service	46
	Proposed Transit Service	46
	Site-Generated Transit Impacts.	46
Р	edestrian Facilities	50
	Pedestrian Study Area	50
	Existing Pedestrian Infrastructure	50
	Proposed Pedestrian Infrastructure	51
	Site-Generated Pedestrian Impacts	51
Bi	cycle Facilities	54
	Existing Bicycle Facilities	54
	Planned Bicycle Facilities	54
	Proposed Bicycle Facilities	54
	Site-Generated Bicycle Impacts	55

Wesley Campus Plan – Comprehensive	Transportation	Review	(CTR)
April 29, 2022			

Safety Analysis	58
Summary of Safety Analysis	58
Potential Impacts	58
Summary and Conclusions	62

LIST OF FIGURES

Figure 1: Site Location	6
Figure 2: Site Aerial	7
Figure 3: Walk Score and Bike Score	10
Figure 4: Major Regional Transportation Facilities	12
Figure 5: Major Local Transportation Facilities	13
Figure 6: Proposed Site Access and Circulation Plan	17
Figure 7: Study Area Intersections	27
Figure 8: Existing, Background, and Total Future Lane Configurations and Traffic Controls	28
Figure 9: Peak Hour Volumes Comprised of Turning Movement Counts from Various Sources	29
Figure 10: Background Growth Applied to 2012 & 2020 Peak Hour Volumes to Establish Existing 2021 Peak Hour Volumes	30
Figure 11: 2021 Existing Peak Hour Volumes	31
Figure 12: Background Growth Peak Hour Volumes	32
Figure 13: 2024 Background Peak Hour Volumes	33
Figure 14: Inbound Trip Distribution (Total Future with Existing Access and Total Future with Proposed Access)	34
Figure 15: Outbound Trip Distribution (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)	35
Figure 16: Outbound Trip Distribution (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)	
Figure 17: Trip Distribution at Study Intersections (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)	37
Figure 18: Trip Distribution at Study Intersections (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)	
Figure 19: Site-generated Peak Hour Volumes (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)	39
Figure 20: Site-generated Peak Hour Volumes (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted Dur Peak Periods – Delivery Vehicle Access Maintained)	•
Figure 21: 2024 Total Future Peak Hour Volumes (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)	
Figure 22: 2024 Total Future Peak Hour Volumes (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)	42
Figure 23: Existing Transit Facilities	49
Figure 24: Existing Pedestrian Pathways	52
Figure 25: Existing Pedestrian Facilities	53
Figure 26: Existing Bicycle Facilities	56
Figure 27: Existing, Planned, and Proposed Bicycle Facilities	57
Figure 28: Total Crashes (2016 to present)	59
Figure 29: Pedestrian-involved Crashes (2018 to present)	60
Figure 30: Bicycle-involved Crashes (2018 to present)	61

LIST OF TABLES

Table 1: Mode Split Assumptions	18
Table 2: Multimodal Trip Generation	18
Table 3: Applied Annual and Total Growth Rates	23
Table 4: LOS Comparison	43
Table 5: v/c Comparison	44
Table 6: 50 th & 95 th Percentile Queuing Comparison (in feet)	45
Table 7: Local Bus Route Information	47
Table 8: WMATA Recommended Bus Stop Amenities	47
Table 9: Bus Stop Inventory	48
Table 10: DDOT Sidewalk Width Requirements	50

Executive Summary

This report presents a Comprehensive Transportation Review (CTR) for the Wesley Campus Plan at the Wesley Theological Seminary (WTS) campus.

The purpose of this CTR is to evaluate whether the project will generate a detrimental impact to the transportation network surrounding the site. This evaluation is based on a technical comparison of the Existing Conditions, Background Conditions, and Total Future Conditions. This report concludes that **the project will not have a detrimental impact** to the surrounding transportation network assuming the proposed site design elements are implemented.

Proposed Project

The development site location is within the WTS campus, which is generally bounded by University Avenue NW to the west, Massachusetts Avenue NW to the north, and the American University (AU) campus to the east and south. The portion of the site to be redeveloped includes the Old President's House, a surface parking lot and two (2) student housing and administration buildings.

The proposed project includes replacement of the Old President's House and removing the surface parking lot and existing buildings to construct a new student housing building containing approximately 215 dwelling units, 1,535 square feet of retail spaces, and 350 below-grade parking spaces.

The proposed student housing building will be for WTS and AU students and may also house immediate families, faculty and staff and building employees. The housing building will not otherwise serve the general public.

Multimodal Overview

Trip Generation

The Wesley Campus Plan is expected to generate new trips within the surrounding transportation network across all transportation modes during the morning and afternoon peak hours. However, with the implementation of a Transportation Demand Management (TDM) plan as part of the project, the resulting new trips generated by the project will not have a detrimental impact on the transportation network. The multimodal trip generation for the proposed project is as follows:

 AM Peak Hour: 14 vehicles/hour, 39 transit riders/hour, four (4) bicycle trips/hour, and 19 walking trips/hour. PM Peak Hour: 33 vehicles/hour, 90 transit riders/hour, 10 bicycle trips/hour, and 45 walking trips/hour.

Transit

The site is located 1.1 miles from the Tenleytown-AU Metro station on the Red Line and is served by local bus routes.

The site is expected to generate a manageable amount of transit trips, and the existing service can accommodate these new trips.

Pedestrian

The site is surrounded by a generally adequate pedestrian network. Despite some incidences of missing sidewalks, curb ramps, and crosswalks on minor streets near the project site, there are generally adequate pedestrian facilities along primary walking routes between the site and major local destinations.

The site is expected to generate a manageable amount of pedestrian trips, and the existing pedestrian facilities can accommodate these new trips.

Bicycle

The site is proximate to several on-street bicycle facilities, including the bike lanes on New Mexico Avenue NW and Van Ness Street NW, and the on-street signed bike routes on 42nd and 43rd Streets NW. Using these facilities, bicyclists have access to several off-street bike facilities, such as the Rock Creek Trail and the Klingle Valley Trail.

Several planned and proposed bicycle projects will improve bicycle access to the site, including protected bike lanes on Massachusetts Avenue NW, Nebraska Avenue NW, and New Mexico Avenue NW.

The project will include long-term bicycle parking inside the building and short-term bicycle parking along the perimeter of the site that meets zoning requirements.

The site is expected to generate a manageable amount of bicycle trips, and the existing bicycle facilities can accommodate these new trips.

Vehicular

The site is accessible via Massachusetts Avenue NW, a principal arterial which connects the site to expressways within the District such as the Southeast Freeway (I-695), the Southwest Freeway (I-395), and the Anacostia Freeway (DC-295). These

expressways connect with the Capital Beltway (I-495) and other regional Interstates.

To identify the project's impact on the transportation network, future conditions were analyzed with and without the project. Intersection analyses were performed to calculate the average delays and queues for vehicles at each of the study intersections. These average delays and queues were compared to the acceptable levels of delay and queue impacts set by DDOT standards to determine if the project will negatively impact the study area.

Further, future conditions with the proposed development were analyzed under the following two scenarios:

- <u>Existing Access:</u> University Avenue egress driveway remains open to site egress traffic during peak periods, consistent with existing conditions. The driveway already does not allow inbound site traffic, other than delivery vehicles.
- <u>Proposed Access:</u> University Avenue egress driveway closed to egress site traffic during AM and PM peak periods, except for delivery vehicles that would still be permitted to use the driveway.

The analysis concluded that one (1) intersection would meet DDOT's delay-related threshold for mitigation under the Existing Access scenario and no intersections under the Proposed Access scenario.

After exploring options for mitigating impacts at this intersection, this report recommends implementing a robust Transportation Demand Management (TDM) plan consistent with DDOT's Baseline Plan as a mitigation measure.

Safety Recommendations

A qualitative review of the crash data available through the DDOT-maintained and publicly-available "Crashes in DC" database was performed to identify study intersections, if any, in which conditions for vehicles, pedestrians, and bicyclists may be improved.

Based on a review of facilities in the area and relevant crash data, two (2) intersections were identified for further evaluation. Recommendations for these intersections, presented for DDOT's consideration and not for the Applicant to complete as part of the proposed project, are summarized below:

Massachusetts Avenue and Wesley Circle NW

Installation of the planned protected bike lanes along Massachusetts Avenue NW would improve conditions for bicyclists and pedestrians. Further, a safety audit should be performed as part of DDOT's Traffic Safety Assessment program.

Massachusetts Avenue and Glover Gate/Katzen Driveway NW

Installation of the planned protected bike lanes along Massachusetts Avenue NW would improve conditions for bicyclists and pedestrians. Further, a safety audit should be performed as part of DDOT's Traffic Safety Assessment program.

Transportation Demand Management (TDM) Plan

Per the DDOT CTR guidelines, the goal of implementing TDM measures is to reduce the number of single occupancy vehicles and vehicle ownership within the District. The promotion of various programs and existing infrastructure includes maximizing the use of transit, bicycle, and pedestrian facilities. DDOT has outlined expectations for TDM measures in the CTR guidelines, and this project is proposing to implement a TDM plan consistent with these guidelines based on the expected impact of the project, as discussed in the Project Design section of this report.

Summary

This report concludes that the Wesley Campus Plan will not have a detrimental impact on the surrounding transportation network assuming the proposed site design elements are implemented.

The project has several positive design elements that minimize potential transportation impacts, including but not limited to the following:

- The site's proximity to transit service and bicycle infrastructure:
- The site's location within a generally adequate pedestrian network along major walking routes;
- The site's loading facility design, which maintains loading activity within private property and provides loading circulation that ensures head-in/head-out truck movements are performed from the public roadway network;
- The inclusion of secure long-term bicycle parking spaces that meet zoning requirements;

- The inclusion of short-term bicycle parking spaces within the site that meet zoning requirements; and
- A TDM plan that reduces the demand of singleoccupancy, private vehicles during peak period travel times and shifts single-occupancy vehicular demand to off-peak periods.

Introduction

This report is a Comprehensive Transportation Review (CTR) reviewing the transportation aspects of the Wesley Campus Plan. The site, shown in Figure 1 and Figure 2, is located at Square 1600 and Lot 0819 within the Wesley Theological Seminary (WTS) campus in the Spring Valley neighborhood of Washington, DC. The site is currently zoned RA-1.

The project site is currently improved with a surface parking lot and two (2) student housing and administration buildings. The proposed project includes removing the surface parking lot and existing buildings, replacing them with a new building containing student housing and retail space with below grade parking.

The proposed project also includes closing the existing University Avenue egress driveway to traffic during the AM and PM peak periods, except for delivery vehicles that would still be permitted to use the driveway. This is identified as the Proposed Access condition, and is presented in further detail within the report.

The proposed student housing building will be for WTS and AU students and may also house immediate families, faculty and staff and building employees. The housing building will not otherwise serve the general public.

Purpose of Study

The purpose of this report is to:

- Review the transportation elements of the proposed project and demonstrate that it conforms to DDOT's general policies of promoting non-automobile modes of travel:
- Provide information to DDOT and other agencies on how the proposed project will impact the local transportation network, accomplishing this by identifying the potential trips generated by the proposed project on all major modes of travel and where these trips will be distributed on the network;
- Determine whether the proposed project will lead to adverse impacts on the local transportation network;
- Propose design elements and Transportation Demand Management (TDM) measures as necessary to mitigate any potential adverse impacts to the transportation network.

Project Summary

The site location is within the WTS campus, which is generally bounded by University Avenue NW to the west, Massachusetts Avenue NW to the north, and the American University (AU) campus to the east and south. The portion of the site to be redeveloped is currently occupied by a surface parking lot and two (2) student housing and administration buildings.

The proposed project includes removing the surface parking lot and existing buildings, replacing them with a new student housing building containing approximately 215 dwelling units, 1,535 square feet of retail space, and 350 below-grade parking spaces.

Pedestrian access to the project is proposed to be located at several entrances on the northern edge of the development along the WTS driveway.

Bicycle access will be provided from the WTS driveways on Massachusetts Avenue and University Avenue. The site is located approximately 0.5 miles northwest of the bike lanes on New Mexico Avenue NW and 0.5 miles southwest of the onstreet signed routes on 42nd and 43rd Streets NW. The project will meet zoning requirements by providing at least 62 long-term bicycle parking spaces inside the building and at least 12 short-term bicycle parking spaces on exterior racks. The nearest Capital Bikeshare station is located 0.2 miles east of the site at Ward Circle.

Vehicular access to the proposed garage will be provided via the internal site circulation with public road access on the northern edge of the site at Massachusetts Avenue.

Loading and deliveries will occur within an internal loading area accessed from the internal site circulation drive via with public road access on the northern edge of the site at Massachusetts Avenue. The proposed loading facilities will accommodate the project's loading needs, maintain loading activity within private property, and provide loading circulation that ensures head-in/head-out truck movements are performed to and from the public roadway network.

No new curb cuts within public space are proposed as part of the project. All vehicular access will remain from existing access locations at the two-way WTS driveway entrance/exit at Massachusetts Avenue NW and the one-way WTS driveway exit at University Avenue NW. The WTS driveway exit at University

Avenue NW is one-way outbound for all vehicles except WTS food service trucks, for which two-way traffic is permitted. Under the Existing Access scenario, this arrangement will not change, and under the Proposed Access scenario, the WTS driveway exit at University Avenue NW would be closed during the AM and PM peak periods, except for delivery vehicles that would still be permitted to use the driveway.

Study Contents

This report contains nine (9) chapters as follows:

• Study Area Overview

This chapter reviews the transportation characteristics of the area surrounding the proposed project.

Project Design

This chapter reviews the transportation components of the proposed project, including site access and circulation, loading and trash operations, parking, and bicycle and pedestrian facilities.

• Travel Demand Assumptions

This chapter outlines the travel demand and projected trip generation of the proposed project.

Traffic Operations

This chapter provides a summary of the existing roadway facilities and an analysis of the existing and future roadway capacity in the study area. This section highlights the vehicular impacts of the project and presents mitigation measures for minimizing impacts as needed.

Transit Facilities

This chapter summarizes the existing and future transit service adjacent to the site and reviews how the project's transit demand will be accommodated.

Pedestrian Facilities

This chapter summarizes existing pedestrian access to the site, reviews walking routes to and from the proposed project, and reviews how the project's pedestrian demand will be accommodated.

Bicycle Facilities

This chapter summarizes existing and future bicycle access to the site and reviews how the project's bicycle demand will be accommodated.

Safety Analysis

This chapter summarizes the potential safety impacts of the project. This includes a qualitative review of existing and proposed safety features surrounding the site.

Summary and Conclusions

This chapter presents overall findings and conclusions.

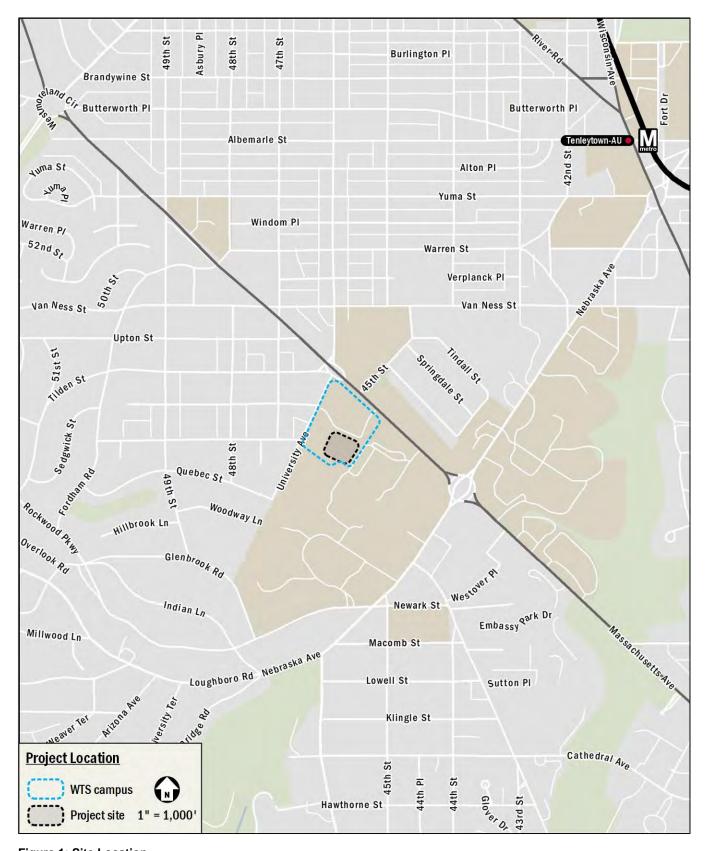


Figure 1: Site Location

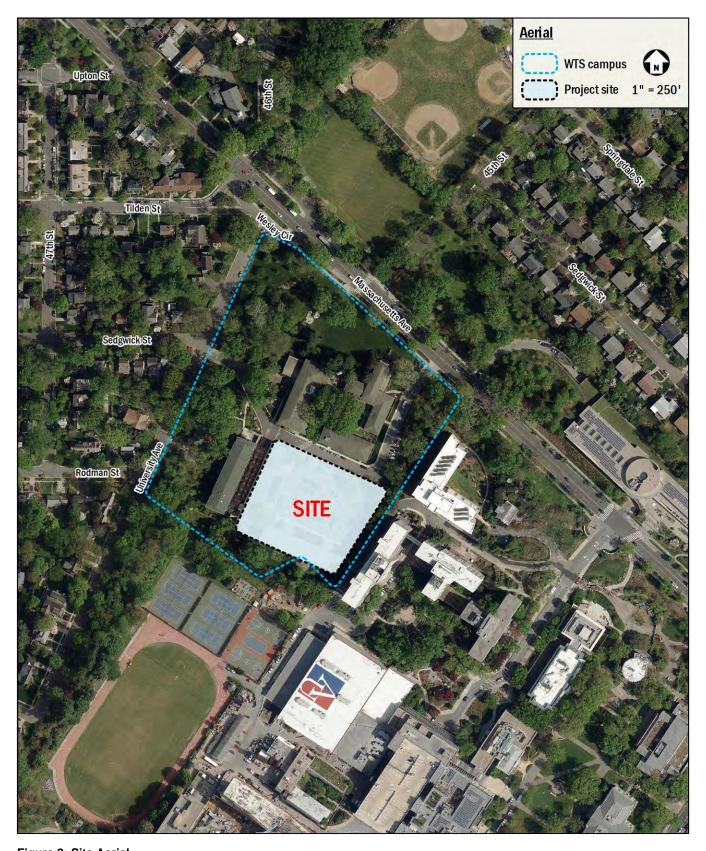


Figure 2: Site Aerial

Study Area Overview

This chapter reviews the major transportation characteristics of the study area and future local and regional projects.

This chapter concludes:

- The site is surrounded by an extensive regional and local transportation system connecting it to the rest of the District and surrounding areas;
- The site is served by bus and rail transit providing service to local and regional destinations;
- The site is accessible to several shared mobility options, including car-sharing, Capital Bikeshare, and personal mobility devices;
- There are several on-street bicycle facilities near the site, with several nearby bicycle improvements planned or proposed;
- The existing pedestrian infrastructure surrounding the site provides a mostly adequate walking environment, particularly along anticipated major walking routes; and
- There are several nearby District-wide and local planning initiatives whose goals are supported by the proposed project.

Major Transportation Features

Overview of Regional Access

As shown in Figure 4, the site has ample access to regional vehicular and transit options that connect the site to destinations within the District, Maryland, and Virginia.

The site is accessible via Massachusetts Avenue NW, a principal arterial which connects the site to expressways within the District such as the Southeast Freeway (I-695), the Southwest Freeway (I-395), and the Anacostia Freeway (DC-295). These expressways connect with the Capital Beltway (I-495) and other regional Interstates.

The site is located 1.1 miles from the Tenleytown-AU Metro station on the Red Line, which travels between the Glenmont and Shady Grove stations by way of downtown Washington, DC.

Overall, the site has ample access to regional roadways and transit options, allowing convenient travel between the site and regional destinations.

Overview of Local Access

There are a variety of major local transportation facilities near the site that serve vehicular, transit, walking, and cycling trips, as shown on Figure 5.

For vehicular trips, the site is accessible via Massachusetts Avenue NW, a principal arterial which connects the site to expressways within the District such as the Southeast Freeway (I-695), the Southwest Freeway (I-395), and the Anacostia Freeway (DC-295). These expressways connect with the Capital Beltway (I-495) and other regional Interstates.

For transit trips, Metrobus and AU Shuttle services provide service in the vicinity of the site, including connections to several neighborhoods within the District and the Tenleytown-AU Metro station. As shown in Figure 5, there are several bus routes serving the site, with multiple bus stops serving these routes located within a half-mile of the site. These bus routes connect the site to many areas of Washington, DC, including several Metro stations where transfers can be made to reach areas in the District, Virginia, and Maryland. A detailed review of all bus routes and transit stops within a half-mile walk of the site is provided in a later chapter of this report.

For bicycle trips, the site is located approximately 0.5 miles northwest of the bike lanes on New Mexico Avenue NW and 0.5 miles southwest of the on-street signed routes on 42nd and 43rd Streets NW. Using these facilities, bicyclists have access to several other regional bicycle facilities. To accommodate bicyclists, the project will provide on-site bicycle facilities as discussed in detail in the Project Design chapter. A detailed review of existing and proposed bicycle facilities and connectivity is provided in the Bicycle Facilities chapter of this report.

Anticipated pedestrian routes such as those to transit stops, schools, and community amenities, provide adequate pedestrian facilities; however, there are a few sidewalks nearby that do not meet DDOT width standards, as well as several missing curb ramps and crosswalks at minor intersections. The site area is free of major barriers to pedestrian connectivity. A detailed review of existing and future pedestrian access and infrastructure is provided in the Pedestrian Facilities chapter of this report.

Carsharing

Two (2) carsharing companies provide service in the District: Zipcar and Free2Move. Both services are private companies that provide registered users access to a variety of automobiles. Of these, Zipcar has designated spaces for their vehicles. The nearest Zipcar location to the site is located near the intersection of Massachusetts Avenue and Embassy Park Drive NW, approximately 0.7 miles southeast of the site.

Carsharing is also provided by Free2Move, which provides point-to-point carsharing. Free2Move currently has a fleet located within areas of the District and Arlington County. Free2Move vehicles may park in any non-restricted metered curbside parking space or Residential Parking Permit (RPP) location in any zone throughout the defined "Home Area". Members do not have to pay the meters or pay stations. Free2Move does not have permanent designated spaces for their vehicles; however, availability is tracked through their website and mobile phone application, which provides an additional option for car-sharing patrons.

Bikeshare and Shared Mobility

The Capital Bikeshare program provides an additional bicycle option for residents, staff, and visitors of the proposed project. The program has placed over 500 bikeshare stations across the Washington, DC metropolitan area with over 4,500 bicycles in the fleet.

In addition to Capital Bikeshare, eight (8) electric-assist scooter (e-scooter) and electric-assist bicycle (e-bike) companies provide Personal Mobility Device (PMD) service in the District: Bird, Lime, Lyft, Razor, Skip, Spin, Helbiz, and JUMP. These PMDs are provided by private companies that give registered users access to a variety of e-scooter and e-bike options. These devices are used through each company-specific mobile phone application. Many PMDs do not have designated stations where pick-up/drop-off activities occur like with Capital Bikeshare; instead, many PMDs are parked in public space, most commonly in the "furniture zone" (the portion of sidewalk between where people walk and the curb, often where other street signs, street furniture, trees, parking meters, etc. are found). Currently, PMD pilot/demonstration programs are underway in Arlington County, the District, Fairfax County, the City of Alexandria, and Montgomery County.

Walk Score and Bike Score

Walkscore.com is a website that provides scores and rankings for walking, biking, and transit conditions within neighborhoods of the District. Based on this website, the site has a walk score of 57 (or "Somewhat Walkable"), a transit score of 42 (or "Some Transit"), and a bike score of 47 (or "Somewhat Bikeable"). Figure 3 shows the site's location within a heat map for walkability and bikeability. The following conclusions can be made based on the data obtained from Walkscore.com:

- The site is situated in a somewhat walkable location where some errands can be accomplished on foot;
- The site is situated in an area with a moderate amount of transit: and
- The site is situated in a somewhat bikeable area with minimal bike infrastructure.

The Wesley Campus Plan will directly improve the neighborhood's pedestrian and bike accessibility by ensuring sidewalks on the project site meet DDOT standards and by providing new short- and long-term bicycle parking facilities.

Figure 3: Walk Score and Bike Score

Future Projects

There are several District initiatives located in the vicinity of the site. These planned and proposed projects are summarized below.

Planning Documents

The following is a review of District-wide or neighborhood-level planning documents which relate to the proposed project.

MoveDC

MoveDC is the District's long-range transportation plan, which provides a framework of goals and policies that will guide transportation decisions in the District over a 25-year period. The MoveDC plan is oriented around the goals of safety, mobility, management and operations, enjoyable spaces, equity, project delivery, and sustainability.

Included in *MoveDC* are Mobility Priority Network maps for bicycles, surface transit, and freight. These maps do not identify specific projects or improvements, but are intended to guide future decisions about which projects will be selected and developed. In direct relation to the proposed Project, the Mobility Priority Network maps identify the following:

 Bicycle improvements along Massachusetts Avenue NW, Nebraska Avenue NW, Arizona Avenue NW, Loughboro Road NW, 49th Street NW, Albermarle Street NW, Glenbrook Road NW, and Rockwood Parkway NW.

Vision Zero Action Plan

DDOT's Vision Zero Action Plan is the implementation strategy of DC's Vision Zero Initiative, which commits to reaching zero fatalities and serious injuries to travelers of DC's transportation system by the year 2024. The Action Plan is based on DC interagency workgroups, public input, local transportation data and crash statistics, and national and international best practices. Workgroups identified the guiding themes for the Vision Zero Action Plan and the goals of the DC government. The Action Plan focuses on the following themes:

- Create Safe Streets
- Protect Vulnerable Users
- · Prevent Dangerous Driving
- Be Transparent and Responsive

Strategies within each theme assign lead and supporting agencies responsible for the planning and implementation of each program. The plan also calls for partners external to District government to ensure accountability and aid in implementation.

While the *Vision Zero Action Plan* does not propose any location-specific actions that relate to the proposed project, the proposed project supports DC's overall Vision Zero goals by not creating any new curb cuts from public space, by providing new short-and long-term bicycle parking facilities, and by ensuring sidewalks along the site's perimeter meet DDOT standards and provide a safe, attractive pedestrian experience.

Sustainable DC 2.0 Plan

Sustainable DC is the District of Columbia's major planning effort to make DC the most sustainable city in the nation. It proposes a variety of sustainability goals, targets, and actions related to the built environment, transportation, and other topics.

The 2019 iteration of the plan, the *Sustainable DC 2.0 Plan*, includes the following proposed action which is supported by the proposed project.

- Expand safe, connected infrastructure for pedestrians and cyclists.
- Reduce greenhouse gas emissions and air pollution from the transportation sector.

The Wesley Campus Plan will support these actions by not creating any new curb cuts from public space, by providing new short- and long-term bicycle parking facilities, and by ensuring sidewalks along the site's perimeter meet DDOT standards and provide a safe, attractive pedestrian experience.

Capital Bikeshare Development Plan

DDOT's *Capital Bikeshare Development Plan* was originally released in 2016 to guide the continued growth of Capital Bikeshare in the District of Columbia. The most recent update of the *Development Plan* was released in 2020 and includes the following:

- A planned station at Turtle Park, 0.2 miles from the site:
- A proposed station at Quebec Street and 48th Street NW, 0.4 miles from the site; and
- A proposed station at 47th Street and Warren Street NW, 0.5 miles from the site.

Rock Creek Far West Livability Study

This is an ongoing DDOT study to evaluate the transportation network within the study area, bound by Massachusetts Avenue, Whitehaven Street, Whitehaven Parkway, Archbold Parkway, Foundry Branch Valley Park, the Potomac River, and the DC/Maryland border, to identify opportunities for a safer and more accessible multimodal network.

The study's primary objectives are to:

- Develop a comprehensive approach to traffic calming and operational improvements for all users living in and visiting the area;
- Identify specific issues that impact safety and comfort of pedestrians, bicyclists, transit users, and motorists, while also accommodating freight and delivery needs;
- Design cost-effective and measurable system improvements that benefit all users;

- Emphasize safety and access improvements around neighborhood facilities including but not limited to schools, parks, recreation centers, transit stops, and other key community facilities; and
- Enhance comfort and livability for residents and visitors to the project area.

Wesley Campus Plan (2012)

This is the currently adopted Campus Plan for Wesley Theological Seminary. It was submitted in 2012 as an amendment to the 2006 Campus Plan, and its approval was valid through June 30, 2021.

The 2012 Campus Plan amended and extended the original 2006 Campus Plan, maintaining levels of student, faculty, and staff but substantially reducing the previously approved new construction. Under the 2012 Campus Plan, existing campus facilities were maintained without demolition and several previously approved new buildings were eliminated from plans. The only addition to the campus was a new three-story, 76-bed residence hall. Additionally, the two existing residential buildings were renovated, surface parking was increased, and other campus enhancements were made.

The Seminary is currently assembling a new Campus Plan amendment consisting of a new administrative building replacing the Old President's House, as well as a new student housing building, which is the subject of this CTR.

American University Campus Plan (2021)

This is American University's recently adopted 10-year Campus Plan, encompassing the main AU campus, the Tenley Campus, and several smaller AU facilities. The Campus Plan outlines anticipated site development, vehicle parking, and Transportation Demand Management (TDM) strategies for the campus. It proposes some development on campus, an increase in the student cap from 13,600 to 14,380 students, an increase in the employee population cap from 2,900 to 3,350, and an increase of the on-site vehicle parking inventory from 2,701 to 3,000 spaces.

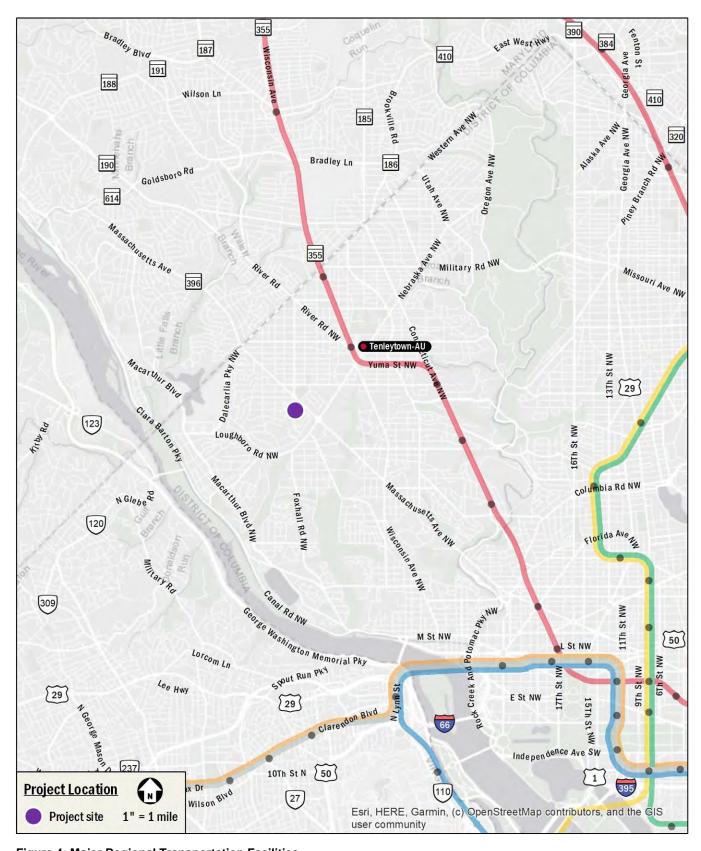


Figure 4: Major Regional Transportation Facilities

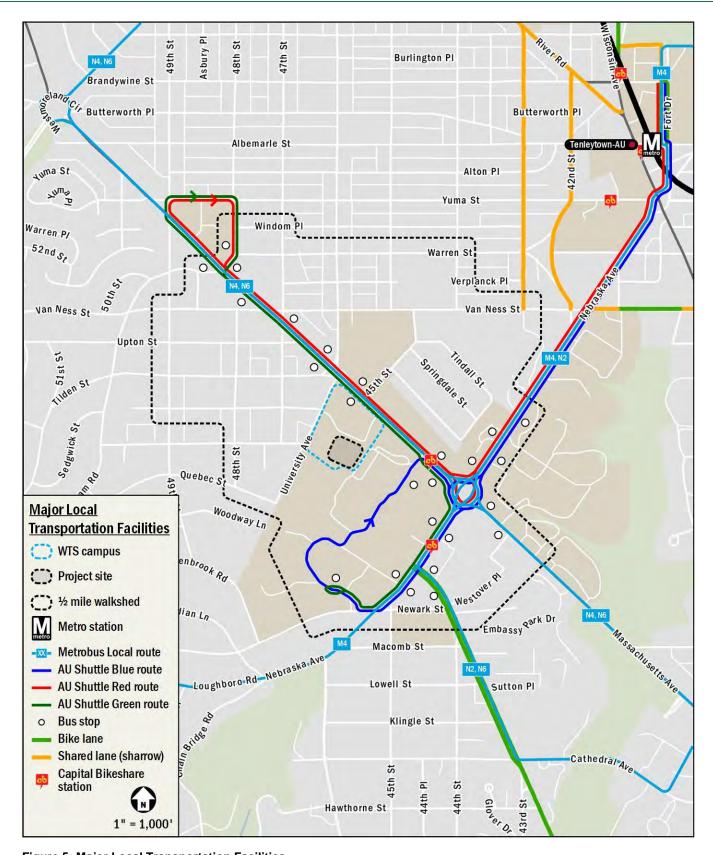


Figure 5: Major Local Transportation Facilities

Project Design

This section reviews the transportation components of the Wesley Campus Plan, including the proposed site plan and access points. It includes descriptions of the site's vehicular access, pick-up/drop-off operations, parking, and pedestrian and bicycle accommodations.

The development site located within the WTS campus, which is generally bounded by University Avenue NW to the west, Massachusetts Avenue NW to the north, and the American University (AU) campus to the east and south. The portion of the site to be redeveloped is currently occupied by a surface parking lot and two (2) student housing and administration buildings. The proposed project includes removing the surface parking lot and existing buildings, replacing them with a new student housing building containing approximately 215 dwelling units, 1,535 square feet of retail space, and 350 below-grade parking spaces.

A detailed site plan is shown on Figure 6.

Site Access and Circulation

Pedestrian Access

Pedestrian access is proposed to be provided via separate residential and retail entrances accessed from the internal driveway within WTS.

Pedestrian access to the site is shown on Figure 6.

Bicycle Access

Bicycle access is proposed to be provided via the garage ramp from the WTS driveway that will lead to a bike storage room in Level 1 of the garage. The project will meet zoning requirements by providing at least 62 long-term bicycle parking spaces inside the building and at least 12 short-term bicycle parking spaces on exterior racks within the site. The exact location of the short-term bicycle parking spaces is still to be determined.

The locations of these facilities are shown on Figure 6.

Vehicular Access

Vehicular access to the proposed garage entrance will be provided via a connection to the internal driveway within the WTS campus with public road access at University Avenue and/or Massachusetts Avenue. No new curb cuts from public space are proposed as part of this project.

Regarding vehicular access locations from public streets, there are two (2) scenarios presented in this report. In the Existing

Access scenario, inbound and outbound traffic will be provided from the two-way WTS driveway entrance/exit at Massachusetts Avenue NW, and the one-way WTS driveway exit at University Avenue NW will be remain open to outbound traffic only. This is consistent with existing vehicular circulation patterns on the WTS campus.

In the Proposed Access scenario, the Massachusetts Avenue NW driveway connection will remain unchanged. However, the one-way WTS driveway exit at University Avenue NW will be closed to traffic during the AM (6:30-7:30 AM) and PM (4:00-7:00 PM) peak periods, except for delivery vehicles that would still be permitted to use the driveway.

These two scenarios are presented for reference and comparison, but the Applicant is planning to implement the Proposed Access scenario.

Figure 6 shows the location of the vehicular access points for the parking garage, pick-up/drop-off area, and loading facilities.

Pick-up/Drop-off Operations

An internal curbside pick-up/drop-off area is proposed along the WTS campus driveway adjacent to the proposed new building. The pick-up/drop-off area is shown on Figure 6.

Loading and Trash

Loading

The proposed loading facilities will accommodate all loading activity and delivery demand for the proposed project without any detrimental impact to the surrounding transportation network. DDOT standards stipulate that truck movements be accommodated without back-in movements through public space. The Wesley Campus Plan has been designed to accommodate all loading activity and associated backing maneuvers within the site. Truck turning diagrams using AutoTURN are provided in the Technical Attachments.

Loading and deliveries will occur in an internal loading area accessed from the existing WTS campus driveway. The proposed loading facilities will accommodate the project's loading needs, maintain loading activity within private property, and provide loading circulation that ensures head-in/head-out truck movements are performed from the public roadway network.

The loading area will include one (1) 30' x 12' loading berth and one (1) 20' x 10' service/delivery space, satisfying ZR16 regulations.

Truck routing to and from the site will be focused on Massachusetts Avenue NW, a designated primary truck route.

Loading access and circulation is shown on Figure 6.

Trash

Trash for the project will be accommodated using trash receptacles within the loading areas. No trash will be stored in public space.

Parking

The WTS site is currently served by 174 surface parking spaces. The proposed developed will displace 143 of the existing surface parking spaces and will include 350 parking spaces within a garage. As a result, the total parking on site will be 381 parking spaces (31 surface + 350 garage).

The net change in parking as a result of the project is therefore 207 net additional spaces.

Because the primary land use is student housing, there is no suitable parking standard from either ZR16 or DDOT's Preferred Parking Rates to compare the proposed supply to. Per Subtitle C § 701.5, college/university land uses should provide parking as set forth in the approved Campus Plan. The 2006 Zoning Order from the approved Wesley Theological Seminary Campus Plan states that at least 200 parking spaces are to be maintained on campus.

Of the 350 garage spaces, 105 spaces will be reserved for general WTS campus use (not for residents of the new building). This number is in keeping with existing conditions; therefore, no net new parking is proposed for non-resident WTS usage.

The existing residential building being removed provides 90 beds for WTS use. The new 215 du building will provide a total of 659 beds. 90 of those beds will be for WTS use to replace the 90 beds being removed. Therefore, the new residential building will provide approximately 569 beds for non-WTS residents.

With 207 net new parking spaces and 569 net new beds, the effective parking ratio for those net new beds is 0.36 spaces per net new bed.

It should also be noted that because the proposed residential building is for WTS and AU students only, its parking supply will function primarily as long-term vehicle storage and is not expected to generate significant peak hour vehicle trips, as is typical of more traditional residential parking facilities.

The parking garage's location and access points within the site are shown on Figure 6.

Bicycle Facilities

The Wesley Campus Plan will meet 2016 Zoning Regulations requirements for long-term and short-term bicycle parking. Per the Zoning Regulations, the project is required to provide the following bicycle facilities:

- Long-Term Bicycle Parking Spaces (62 required)
 - o One (1) space per 3 dwelling units
 - o One (1) space per 10,000 SF of retail space
- Short-Term Bicycle Parking Spaces (11 required)
 - o One (1) space per 20 dwelling units
 - o One (1) space per 3,500 SF of retail space

The project will meet or exceed zoning requirements by providing at least 62 long-term bicycle parking spaces inside the garage and at least 12 short-term bicycle parking spaces on exterior racks within the site. The exact location of the short-term bicycle parking spaces is still to be determined. The long-term bicycle spaces will adhere to Subtitle C § 805.9 of DC's zoning requirements, as well as DDOT's Bike Parking Guide, which stipulate that long-term spaces be located indoors in a parking garage or bike storage room, and that at least 50 percent of required long-term spaces be placed horizontally on the floor or ground, without bicycles being suspended.

Pedestrian Facilities

The Wesley Campus Plan will ensure pedestrian facilities along the site's WTS driveway frontage meet DDOT and ADA standards. The Applicant is also coordinating with American University (AU) on options to maintain the existing pedestrian connection between the two campuses, located on the east side of the project site.

Transportation Demand Management

Transportation Demand Management (TDM) is the application of policies and strategies used to reduce travel demand or to redistribute demand to other times or spaces. TDM elements typically focus on reducing the demand of single-occupancy, private vehicles during peak period travel times or on shifting single-occupancy vehicular demand to off-peak periods.

The TDM plan for the proposed project is based on zoning regulations in addition to DDOT expectations for TDM programs for developments of this type and size. As such, the applicant proposes the following TDM measures for the project.

- Unbundle the cost of vehicle parking from the lease for each residential unit and charge a minimum rate based on the average market rate within a quarter mile. Only hourly, daily, weekly, or monthly rates will be charged.
 Free parking, validation, or discounted rates will not be offered.
- Identify Transportation Coordinators for the planning, construction, and operations phases of development.
 The Transportation Coordinators will act as points of contact with DDOT, goDCgo, and Zoning Enforcement.
- Will provide Transportation Coordinators' contact information to goDCgo, conduct an annual commuter survey of employees on-site, and report TDM activities and data collection efforts to goDCgo once per year.
- Transportation Coordinators will develop, distribute, and market various transportation alternatives and options to the residents, including promoting transportation events (i.e., Bike to Work Day, National Walking Day, Car Free Day) on property website and in any internal building newsletters or communications.
- Transportation Coordinators will receive TDM training from goDCgo to learn about the TDM conditions for this project and available options for implementing the TDM Plan.
- Provide residents who wish to carpool with detailed carpooling information and will be referred to other carpool matching services sponsored by the Metropolitan Washington Council of Governments (MWCOG) or other comparable service if MWCOG does not offer this in the future.
- Will meet ZR16 short- and long-term bicycle parking requirements by providing 62 long-term spaces and 12 short-term spaces free of charge to residents.
- Long-term bicycle storage rooms will accommodate non-traditional sized bikes including cargo, tandem, and kids' bikes.
- Provide welcome packets to all new residents that should, at a minimum, include the Metrorail pocket

- guide, brochures of local bus lines (Circulator and Metrobus), carpool and vanpool information, CaBi coupon or rack card, Guaranteed Ride Home (GRH) brochure, and the most recent DC Bike Map. Brochures can be ordered from DDOT's goDCgo program by emailing info@godcgo.com.
- Transportation Coordinator will subscribe to goDCgo's residential newsletter.
- Post all TDM commitments on website, publicize availability, and allow the public to see what commitments have been promised.
- Provide a FREE SmarTrip card to every new resident and a complimentary Capital Bikeshare coupon good for one ride.

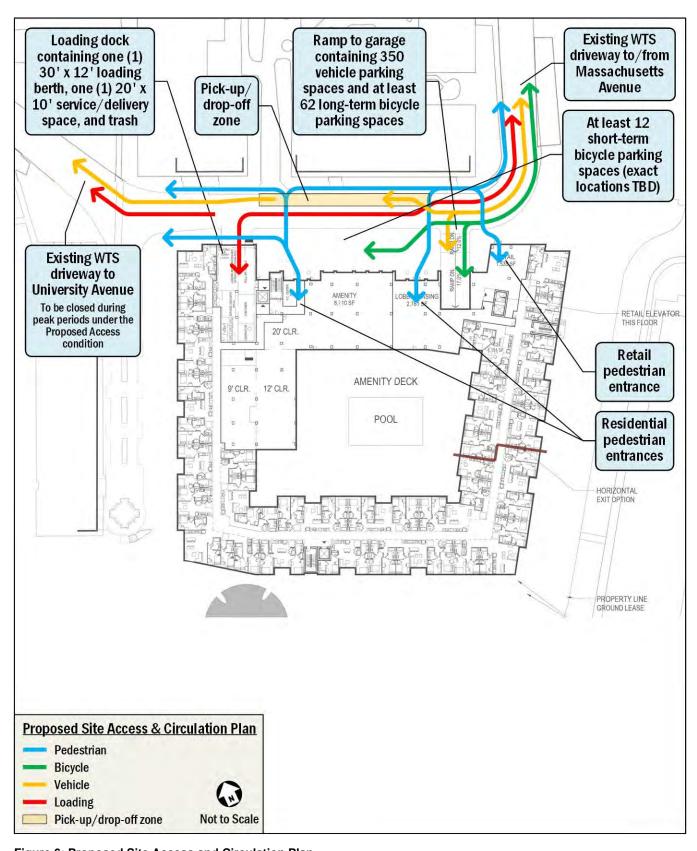


Figure 6: Proposed Site Access and Circulation Plan

Travel Demand Assumptions

This section outlines the transportation demand for the Wesley Campus Plan. It summarizes the projected trip generation of the proposed project by mode, which forms the basis for the sections that follow. These assumptions were vetted and approved by DDOT as a part of the scoping process for the study.

Traditionally, weekday peak hour trip generation is calculated based on the methodology outlined in the Institute of Transportation Engineers' (ITE) *Trip Generation*, 10th Edition. This methodology was supplemented to account for the urban nature of the project (ITE *Trip Generation* provides data for non-urban, low transit use sites) and to generate trips for multiple modes, as vetted and approved by DDOT.

Note that the trip generation shown below, the traffic forecasts presented in this report and the capacity analyses are based on the initial plan presented during the CTR scoping process that included 219 dwelling units and 690 beds. Since the plan has since been reduced to 215 dwelling units and 659 beds, these analyses represent a conservatively high estimate of the impact for the proposed project. For reference purposes, updated trip generation for the current 659-bed facility is provided in the technical attachments.

Proposed Site Trip Generation

The residential portion of the project's proposed trip generation was calculated based on ITE land use 225, *Off-Campus Student Apartment - Adjacent to Campus*, while the retail portion was calculated based on ITE land use 820, *Shopping Center.* Trips were split into different modes using assumptions derived from census data for people that currently live or work near the site, WMATA ridership survey data, and the proposed parking supply. A summary of the mode split assumptions is provided in Table 1.

Table 1: Mode Split Assumptions

Land Use		Мо	de			
Lanu USe	Drive	Transit	Bike	Walk		
Residential	20%	50%	5%	25%		
Retail	50%	25%	5%	20%		

A summary of the multimodal trip generation for the project is provided in Table 2 for the AM and PM peak hours. The project is expected to generate 14 vehicular trips (6 in, 8 out) during the AM peak hour, and 33 vehicular trips (16 in, 17 out) during the PM peak hour. Detailed calculations are included in the Technical Attachments.

Table 2: Multimodal Trip Generation

Mada	Mada Calit	Londilloo		AM Peak Hou	r	PM Peak Hour					
Mode	Mode Split	Land Use	ln	Out	Total	In	Out	Total			
	20%	Residential	5	8	13	14	16	30			
Auto (veh/hr)	50%	Retail	1	0	1	2	1	3			
(veri/iii)		Total	6	8	14	16	17	33			
	50%	Residential	16	22	38	44	43	87			
Transit (ppl/hr)	25%	Retail	1	0	1	1	2	3			
(PP###)		Total	17	22	39	45	45	90			
	5%	Residential	2	2	4	4	5	9			
Bike (ppl/hr)	5%	Retail	0	0	0	0	1	1			
(PP#111)		Total	2	2	4	4	6	Total 30 3 33 87 3 90			
	25%	Residential	8	11	19	22	21	43			
Walk (ppl/hr)	20%	Retail	0	0	0	1	1	2			
(PP#111)		Total	8	11	19	23	22	45			

Traffic Operations

This chapter provides a summary of an analysis of the existing and future roadway capacity surrounding the site. Included is an analysis of potential vehicular impacts of the Wesley Campus Plan.

The purpose of the capacity analysis is to:

- Determine the existing capacity of the study area roadways;
- Determine the overall impact of the project on the study area roadways; and
- Discuss any potential improvements to accommodate the additional vehicular trips.

This analysis was performed by determining the traffic volumes and roadway capacity for Existing Conditions, Background (nobuild) Conditions, and Total Future (build) Conditions. The scope of the capacity analysis was developed based on DDOT guidelines and agreed upon by DDOT staff.

The capacity analysis focuses on the weekday AM and PM commuter peak hours.

This chapter concludes:

- Under Existing Conditions, three (3) study intersections operate at an unacceptable level of service based on the HCM capacity analyses, and one (1) study intersection experiences queues that exceed available storage.
- Under Background Conditions, three (3) study intersections operate at an unacceptable level of service based on the HCM capacity analyses, and one (1) study intersection experiences queues that exceed available storage.
- Under Total Future Conditions with the Existing Access, three (3) study intersections operate at an unacceptable level of service based on the HCM capacity analyses, and two (2) study intersections experience queues that exceed available storage.
- Under Total Future Conditions with the Proposed Access, two (2) study intersections operate at an unacceptable level of service based on the HCM capacity analyses, and one (1) study intersection experiences queues that exceed available storage.

- Two (2) study intersections met the threshold for requiring mitigation measures as a result of the proposed development:
 - Massachusetts Avenue and Wesley Circle NW (PM)
 - Massachusetts Avenue and WTS Driveway
 NW (PM)
- Potential mitigation measures were identified at these intersections in the form of a robust Transportation Demand Management (TDM) plan.
- Overall, this report concludes that the proposed project will not have a detrimental impact to the surrounding vehicular network, with the implementation of all recommended site design elements and Transportation Demand Management (TDM) measures.

Study Area, Scope, & Methodology

This section outlines the vehicular trips generated in the study area along the vehicular access routes and defines the analysis assumptions.

The scope of the analysis contained within this report was discussed with and agreed upon by DDOT. The general methodology of the analysis follows national and DDOT guidelines on the preparation of transportation impact evaluations of site development. The approved scope is included in the technical attachments.

Capacity Analysis Scenarios

The vehicular capacity analyses were performed to determine whether the project will lead to adverse impacts on traffic operations. A review of potential impacts to other modes is outlined later in this report. This is accomplished by comparing three (3) future scenarios:

- Without the project (referred to as the Background Conditions);
- With the project approved and constructed with the Existing Access condition; and
- With the project approved and constructed with the Proposed Access condition; and

Specifically, the roadway capacity analysis examines the following scenarios:

- Existing Conditions (2021 Existing Conditions);
- Future Conditions without the Project (2024 Background Conditions); and
- Future Conditions with the Project and the Existing
 Access condition that maintains the outbound traffic
 flow to University Avenue during the peak periods (2024
 Total Future Conditions with Existing Access).
- Future Conditions with the Project and the Proposed Access condition that restricts site traffic on University Avenue during the peak periods (2024 Total Future Conditions with Proposed Access).

Study Area

The study area of the analysis is a set of intersections where detailed capacity analyses were performed for the scenarios listed above. The set of intersections decided upon during the study scoping process with DDOT are those intersections most likely to have potential impacts or require changes to traffic operations to accommodate the project. Although it is possible that impacts will occur outside of the study area, those impacts are neither significant enough to be considered a material adverse impact nor worthy of mitigation measures.

Based on the projected future trip generation and the location of the site access points, the following intersections were selected:

- Massachusetts Avenue & 46th Street/Tilden Street/Wesley Circle NW
- 2. University Avenue & Wesley Circle NW
- 3. Massachusetts Avenue & Wesley Circle NW
- University Avenue & Sedgwick Street/WTS Driveway NW
- 5. Massachusetts Avenue & 45th Street NW
- 6. Massachusetts Avenue & WTS Driveway NW
- Massachusetts Avenue & Glover Gate/Katzen Driveway NW

Figure 7 shows a map of the study area intersections.

Geometry and Operations Assumptions

The following section reviews the roadway geometry and operations assumptions made and the methodologies used in the roadway capacity analyses.

2021 Existing Geometry and Operations Assumptions

Gorove Slade made observations and confirmed the existing lane configurations and traffic controls at the intersections within the study area. Existing signal timings and offsets were obtained from DDOT.

The lane configurations and traffic controls for the Existing Conditions are shown on Figure 8.

2024 Background Geometry and Operations Assumptions

The configurations and traffic controls for the 2024 Background Conditions were based on those for the 2021 Existing Conditions with the addition of background improvements.

Following national and DDOT methodologies, a background improvement must meet the following criteria to be incorporated into the analysis:

- · Be funded; and
- Have a construction completion date prior or close to the project.

Based on these criteria, there were no background improvements assumed in the analysis.

The lane configurations and traffic controls for the Background Conditions, which are the same as those of the Existing Conditions, are shown on Figure 8.

2024 Total Future Conditions Geometry and Operations Assumptions

The configurations and traffic controls for the 2024 Total Future Conditions were based on those for the 2024 Background Conditions with the addition of the proposed project.

The lane configurations and traffic controls for the Total Future Conditions, which are the same as those of the Existing and Background Conditions, are shown on Figure 8. Although there are different traffic volume assumptions for Total Future Conditions with Existing Access and with Proposed Access, the lane configurations and traffic controls are the same for both.

Traffic Volume Assumptions

The following section reviews the traffic volume assumptions and methodologies used in the roadway capacity analyses.

2021 Existing Traffic Volumes

Data collection for all intersections was not possible during fall 2021 as traffic volumes were not representative of typical conditions due to the ongoing COVID-19 emergency. To establish baseline conditions, the study analyzed 2021 traffic volumes comprised of turning movement count data collected in 2012 and February 2020 with applied growth rates based on the data collection year, as well as turning movement count data collected in September 2021 at intersections for which historical data was not available. The grown volumes from these sources were then balanced conservatively (adding volumes to the overall network) to create 2021 existing conditions. The traffic volume data sources are summarized below.

2012 WTS Campus Plan Update

Turning movement counts collected in 2012 for this project's TIA were available for the following intersections:

- University Avenue & Sedgwick Street/WTS Driveway
 NW: and
- Massachusetts Avenue & WTS Driveway NW.

The unadjusted peak hour traffic volumes from this source are shown in Figure 9.

2021 AU Campus Plan

Turning movement counts collected in February 2020 (prior to the COVID-19 emergency) for this project's CTR were available for the following intersections:

- Massachusetts Avenue & 46th Street/Tilden Street/Wesley Circle NW;
- Massachusetts Avenue & 45th Street NW; and
- Massachusetts Avenue & Glover Gate/Katzen Driveway
 NW

The unadjusted peak hour traffic volumes from this source are shown in Figure 9.

2021 Turning Movement Counts

Turning movement counts were collected on Wednesday, September 22, 2021 for the following intersections for which historical turning movement count data was not available:

University Avenue & Wesley Circle NW; and

Massachusetts Avenue & Wesley Circle NW.

The unadjusted peak hour traffic volumes from this source are shown in Figure 9.

<u>Volumes Generated by Regional Traffic Growth through</u> 2021

Traffic growth was applied to the 2012 and 2020 volumes based on their respective data collection year to establish 2021 existing volumes. These background growth volumes are shown in Figure 10.

The applied growth rates for 2012/2020 through 2021 are based on historic AADT data and are shown on Table 3. Detailed growth rate assumptions are provided in the Technical Attachments.

The 2021 Existing peak hour traffic volumes are shown in Figure 11.

2024 Background Traffic Volumes (without the Project)

The traffic projections for the 2024 Background Conditions consist of the 2021 Existing volumes with the following additions:

- The addition of traffic generated by developments expected to be completed prior to the project (known as background developments); and
- The addition of inherent growth on the roadway (representing regional traffic growth).

Volumes Generated by Background Developments

Following national and DDOT methodologies, a background development must meet the following criteria to be incorporated into the analysis:

- Be located in the study area, defined as having an origin or destination point within the cluster of study area intersections;
- · Have entitlements; and
- Have a construction completion date prior or close to the future analysis year of 2024.

Based on these criteria, and as discussed with and agreed upon by DDOT, there are no developments meeting the above criteria; therefore there are no background developments included in this analysis.

Volumes Generated by Regional Traffic Growth

While background developments represent local traffic changes, regional traffic growth is typically accounted for using growth

rates. The growth rates used in this analysis are based on MWCOG's currently adopted regional transportation model, comparing the difference between the year 2021 and 2024 model scenarios. The growth rates observed in this model served as a basis for analysis assumptions, and a conservative 0.10 percent annual growth rate was applied to roadways where negative growth was observed. The applied growth rates are shown in Table 3. The traffic volumes generated by the inherent growth along the network between 2021 and 2024 are shown on Figure 12.

The existing peak hour volumes presented in Figure 11 were combined with the background growth peak hour volumes shown in Figure 12 to establish the 2024 Background traffic volumes. The traffic volumes for the 2024 Background Conditions are shown in Figure 13.

2024 Total Future with Existing Access Traffic Volumes (Site Access Consistent with Existing Conditions)

The 2024 Total Future with Existing Access traffic volumes consist of the following:

- Existing volumes, shown on Figure 11;
- Inherent growth on study area roadways, shown on Figure 12;
- Site-generated volumes under existing vehicular access conditions, shown on Figure 19.

Site-Generated Volumes (Existing Access Conditions)

Trip distribution for the site-generated trips under existing vehicular access conditions was determined based on:

- Census Transportation Planning Products (CTPP)
 Traffic Analysis Zone (TAZ) data;
- Existing and future travel patterns in the study area; and
- Inbound and outbound site travel patterns as determined by vehicular access with existing access conditions (maintaining the existing WTS campus circulation with the University Avenue driveway exit consistent with existing conditions).

Based on this review and the site access locations, the sitegenerated trips were distributed through the study area intersections. Trip distribution assumptions and specific routings were analyzed for inbound and outbound trips. Inbound and outbound distribution assumptions for the project are provided in Figure 14 and Figure 15, respectively. Detailed distributions at each study intersection are shown in Figure 17. Site-generated peak hour volumes under existing vehicular access conditions are shown in Figure 19.

The traffic volumes for the 2024 Total Future with Existing Access Conditions are shown on Figure 21.

2024 Total Future with Proposed Access Traffic Volumes (University Avenue Site Egress Closed During Peak Periods)

The 2024 Total Future with Proposed Access traffic volumes consist of the following:

- Existing volumes, shown on Figure 11;
- Inherent growth on study area roadways, shown on Figure 12;
- Site-generated volumes under proposed access conditions with the University Avenue site egress closed (access for delivery vehicles maintained) during the AM and PM peak periods, shown on Figure 20.

Site-Generated Volumes (Proposed Access Conditions)

Trip distribution for the site-generated trips under proposed vehicular access conditions was determined based on:

- Census Transportation Planning Products (CTPP)
 Traffic Analysis Zone (TAZ) data;
- Existing and future travel patterns in the study area; and
- Inbound and outbound site travel patterns as determined by vehicular access with proposed access conditions (with the University Avenue driveway resitricted during the AM and PM peak periods – delivery vehicle access maintained).
 - All exiting site traffic rerouted to the right turn egress movement onto Massachusetts Avenue.

Based on this review and the site access locations, the sitegenerated trips were distributed through the study area intersections. Trip distribution assumptions and specific routings were analyzed for inbound and outbound trips. Inbound and outbound distribution assumptions for the project are provided in Figure 14 and Figure 16, respectively. Detailed distributions at each study intersection are shown in Figure 18.

Site-generated peak hour volumes under proposed vehicular access conditions are shown in Figure 20.

The traffic volumes for the 2024 Total Future with Proposed Access Conditions are shown on Figure 22.

Table 3: Applied Annual and Total Growth Rates

Roadway	Dir.	Proposed Annual Growth Rate Between 2020 and 2021 ¹		Propose Growth Be and	tween 2020	Growth Ra	d Annual te Between d 2024 ²	Proposed Total Growth Between 2021 and 2024		
		AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	
Massachusetts	EB	0.10%	0.10%	0.10%	0.10%	0.30%	0.10%	0.90%	0.30%	
Ave NW	WB	2.00%	0.50%	2.00%	0.50%	0.10%	0.30%	0.30%	0.90%	
Sedgewick St	EB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%	
NW	WB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%	
ACHE CLENINA	NB	2.00%	0.10%	2.00%	0.10%	0.10%	0.10%	0.30%	0.30%	
46th St NW	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%	
University Ave	NB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%	
NW ³	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%	
4545 C4 NIVA/	NB	0.50%	0.50%	0.50%	0.50%	0.10%	0.10%	0.30%	0.30%	
45th St NW	SB	2.00%	0.10%	2.00%	0.10%	0.90%	0.10%	2.72%	0.30%	
Campus Dr	NB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%	
NW .	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%	

¹ These rates were applied to volumes recorded in February 2020 that were used to establish 2021 existing conditions. Rates are based on MWCOG's currently adopted regional transportation model for this time period.

² These rates were applied to volumes grown from 2021 existing conditions. Rates are based on MWCOG's currently adopted regional transportation model for this time period.

³ Study intersection #3 (University Ave & Sedgwick St/WTS Exit NW) only had available traffic counts from 2012, not February 2020 like the other study intersections. Therefore, to establish 2021 Existing Conditions, annual growth rates of 0.10% were applied to the northbound and southbound volumes of University Ave NW at this intersection for every year between 2012 and 2021, totaling 0.90% for each direction.

Vehicular Analysis Results

Intersection Capacity Analysis

Intersection capacity analyses were performed for the four (4) scenarios outlined previously at the intersections contained within the study area during the AM and PM peak hours. Synchro version 10 was used to analyze the study intersections based on the Highway Capacity Manual (HCM) 2000 methodology.

Further analyses were also performed at the WTS driveway intersection with Massachusetts Avenue using the SimTraffic modeling software to account for gaps in through traffic that would be provided by the upstream traffic signal to the east and the pedestrian signal to the west. The results of these simulations indicate that the WTS driveway on Massachusetts Avenue operates with LOS C or better during all scenarios studied. The simulation runs were based on 15-minute seeds with 60-minute run times, and the results shown were taken as the average of five (5) model runs.

The results of the capacity analyses are expressed in level of service (LOS) and delay (seconds per vehicle) for each approach. A LOS grade is a letter grade based on the average delay (in seconds) experienced by motorists traveling through an intersection. LOS results range from "A" being the best to "F" being the worst. LOS D is typically used as the acceptable LOS threshold in the District; although LOS E or F is sometimes accepted in urbanized areas if vehicular improvements would be a detriment to safety or non-auto modes of transportation.

The LOS capacity analyses were based on: (1) the intersection peak hour traffic volumes; (2) the lane use and traffic controls; and (3) the HCM methodologies (using *Synchro* software). The average delay of each approach and LOS is shown for all intersections in addition to the overall average delay and intersection LOS grade. Detailed LOS descriptions and the analysis worksheets are contained in the Technical Attachments.

Table 4 shows the results of the capacity analyses, including LOS and average delay per vehicle (in seconds) for the 2021 Existing, 2024 Background, 2024 Total Future with Existing Access, and 2024 Total Future with Proposed Access scenarios. Table 5 shows a comparison of the volume to capacity (v/c) ratios, while Table 6 shows a comparison of queuing results.

Intersection Capacity Under Existing Conditions

As shown in Table 4, two (2) of the study intersections operate at unacceptable conditions or have one or more approaches operating at unacceptable levels during Existing Conditions:

- Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW
 - Southwestbound (PM)
- Massachusetts Ave & Wesley Cir NW
 - Northbound (PM)

Intersection Capacity Under Background Conditions

As shown in Table 4, two (2) of the study intersections operate at unacceptable conditions or have one or more approaches operating at unacceptable levels during Background Conditions:

- Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW
 - Southwestbound (PM)
- Massachusetts Ave & Wesley Cir NW
 - Northbound (PM)

Intersection Capacity Under Future with Existing Access Conditions

As shown in Table 4, two (2) of the study intersections operate at unacceptable conditions or have one or more approaches operating at unacceptable levels during Total Future with Existing Access Conditions:

- Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW
 - Southwestbound (PM)
- Massachusetts Ave & Wesley Cir NW
 - o Northbound (PM)

Intersection Capacity Under Future with Proposed Access Conditions

As shown in Table 4, one (1) of the study intersections operates at unacceptable conditions or have one or more approaches operating at unacceptable levels during Total Future with Proposed Access Conditions:

- Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW
 - Southwestbound (PM)

Queuing Analysis

In addition to the capacity analyses presented above, a queuing analysis was performed at each of the study intersections. The queuing analysis was performed using *Synchro* software. The 50th percentile and 95th percentile maximum queue lengths are shown for each lane group at the study area's signalized intersections. The 50th percentile maximum queue is the maximum back of queue on a typical cycle. The 95th percentile

queue is the maximum back of queue with 95th percentile traffic volumes. For unsignalized intersections, the 95th percentile queue is reported for each lane group (including free-flowing left turns and stop-controlled movements) based on the HCM calculations.

Table 6 shows the queuing results for the study intersections, including 50th and 95th percentile queues for the 2021 Existing, 2024 Background, 2024 Total Future with Existing Access, and 2024 Total Future with Proposed Access scenarios.

Queuing Under Existing Conditions

As shown in Table 6, one (1) of the study intersections has one or more lane group that exceeds the given storage length during Existing Conditions:

- Massachusetts Ave & Glover Gate/Katzen Dwy NW
 - Northeastbound left/thru (PM)
 - Southwestbound left/thru/right (AM, PM)

Queuing Under Background Conditions

As shown in Table 6, one (1) of the study intersections has one or more lane group that exceeds the given storage length during Background Conditions:

- Massachusetts Ave & Glover Gate/Katzen Dwy NW
 - o Northeastbound left/thru (PM)
 - Southwestbound left/thru/right (AM, PM)

Queuing Under Future with Existing Access Conditions

As shown in Table 6, two (2) of the study intersections have one or more lane group that exceeds the given storage length during Total Future with Existing Access Conditions:

- Massachusetts Ave & Wesley Cir NW
 - Northbound left/right (PM)
- Massachusetts Ave & Glover Gate/Katzen Dwy NW
 - Northeastbound left/thru (PM)
 - Southwestbound left/thru/right (AM, PM)

Queuing Under Future with Proposed Access Conditions

As shown in Table 6, one (1) of the study intersections has one or more lane group that exceeds the given storage length during Total Future with Proposed Access Conditions:

- Massachusetts Ave & Glover Gate/Katzen Dwy NW
 - Northeastbound left/thru (PM)
 - Southwestbound left/thru/right (AM, PM)

Mitigation Measures

Based on DDOT standards, the project is considered to have an impact at an intersection within the study area if any of the following conditions are met:

- The capacity analyses show a LOS E or F at an intersection or along an approach in Future conditions with the project where one does not exist in Background Conditions;
- There is an increase in delay at any approach or overall intersection operating under LOS E or F of greater than five (5) percent when compared to Background Conditions;
- A 95th percentile queue exceeds storage along an approach in Future Conditions with the project where it does not in Background Conditions; or
- There is an increase in the 95th percentile queue by more than 150 feet along an approach in that exceeds storage in Background Conditions.

Based on these criteria, there are impacts at one intersection under Total Future with Existing Access and no impacts under Total Future with Proposed Access. These impacts are detailed below.

Massachusetts Avenue and Wesley Circle NW (Total Future with Existing Access Conditions)

Northbound Approach

The northbound¹ approach of Wesley Circle NW is projected to increase delay by more than 5 percent during Total Future with Existing Access Conditions when compared to Background Conditions during the afternoon peak hour.

This condition cannot be mitigated through either geometric or traffic signal modifications because there can only be one lane merging onto Massachusetts Avenue NW, and because the intersection is unsignalized. Rather, mitigation is proposed to be

¹ This approach is coded in *Synchro* as northbound to differentiate it from the other approaches, but it is actually the eastbound approach of Wesley Circle NW as it merges onto southeastbound Massachusetts Avenue NW.

addressed through a robust Transportation Demand
Management (TDM) plan consistent with DDOT's Baseline Plan.

Massachusetts Avenue and WTS Driveway NW (Total Future with Existing Access Conditions and Total Future with Proposed Access Conditions)

Northbound Approach

With the removal of WTS outbound traffic (delivery vehicle access maintained) from University Avenue during the peak periods evaluated as part of Total Future with Proposed Access Conditions, the northbound² approach of Wesley Circle NW would realize a reduction in delay and would no longer exceed adequacy standards.

Under Total Future with Proposed Access Conditions, the project would not have any vehicular impacts within the study area that would warrant mitigation per the DDOT CTR guidelines.

² This approach is coded in *Synchro* as northbound to differentiate it from the other approaches, but it is actually the eastbound approach of Wesley Circle NW as it merges onto southeastbound Massachusetts Avenue NW.

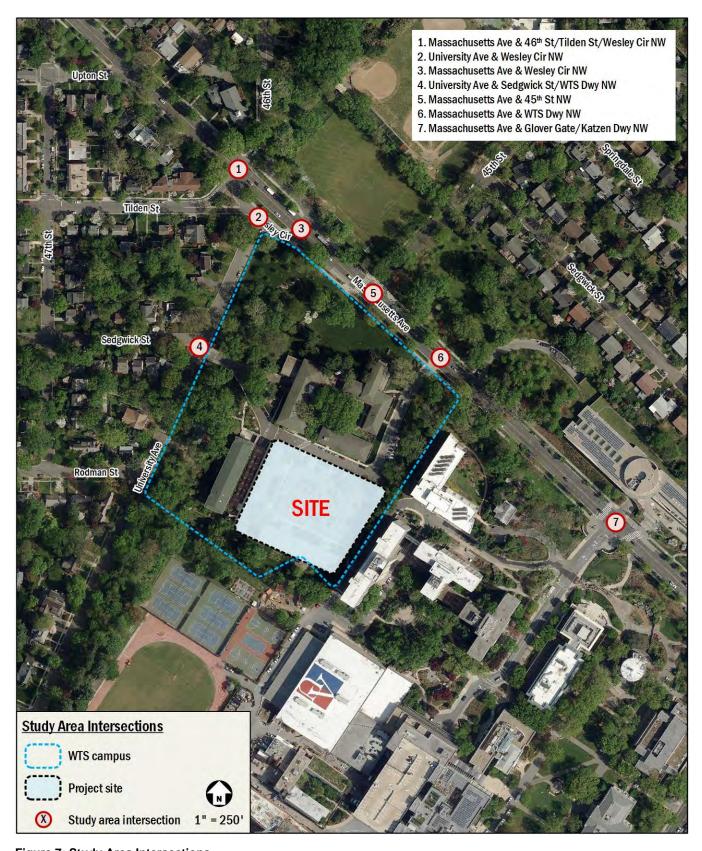


Figure 7: Study Area Intersections

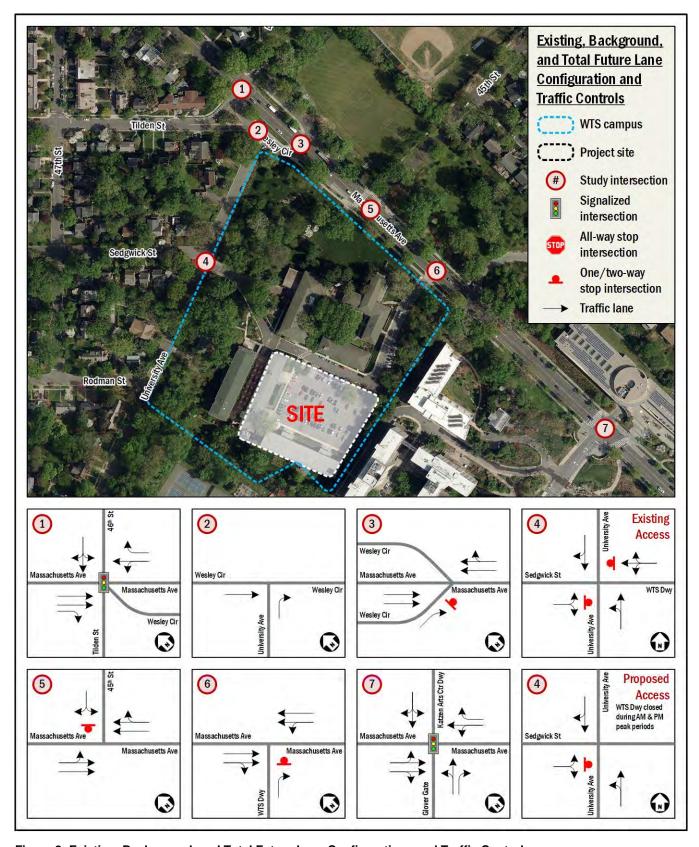


Figure 8: Existing, Background, and Total Future Lane Configurations and Traffic Controls

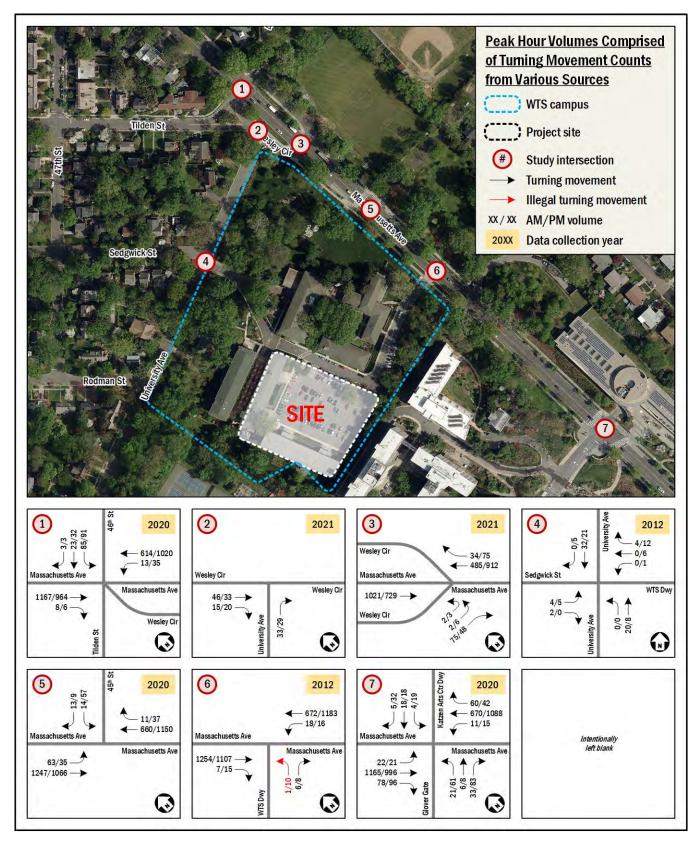


Figure 9: Peak Hour Volumes Comprised of Turning Movement Counts from Various Sources

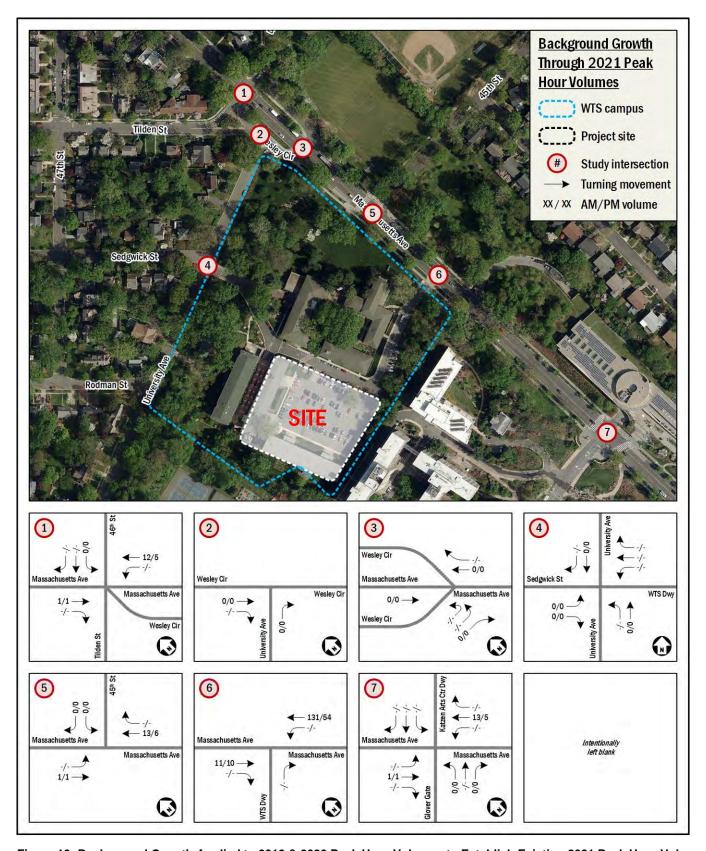


Figure 10: Background Growth Applied to 2012 & 2020 Peak Hour Volumes to Establish Existing 2021 Peak Hour Volumes

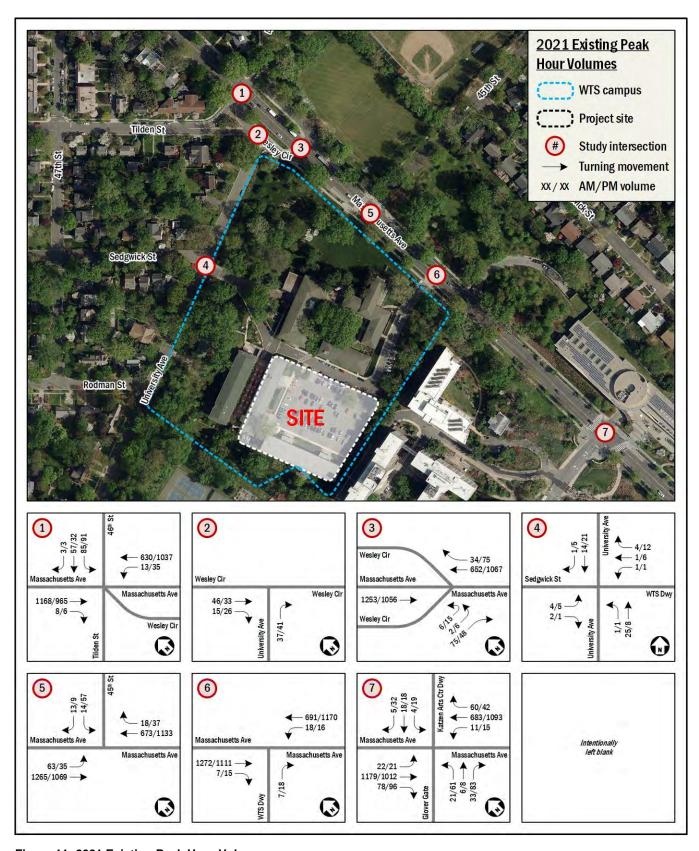


Figure 11: 2021 Existing Peak Hour Volumes

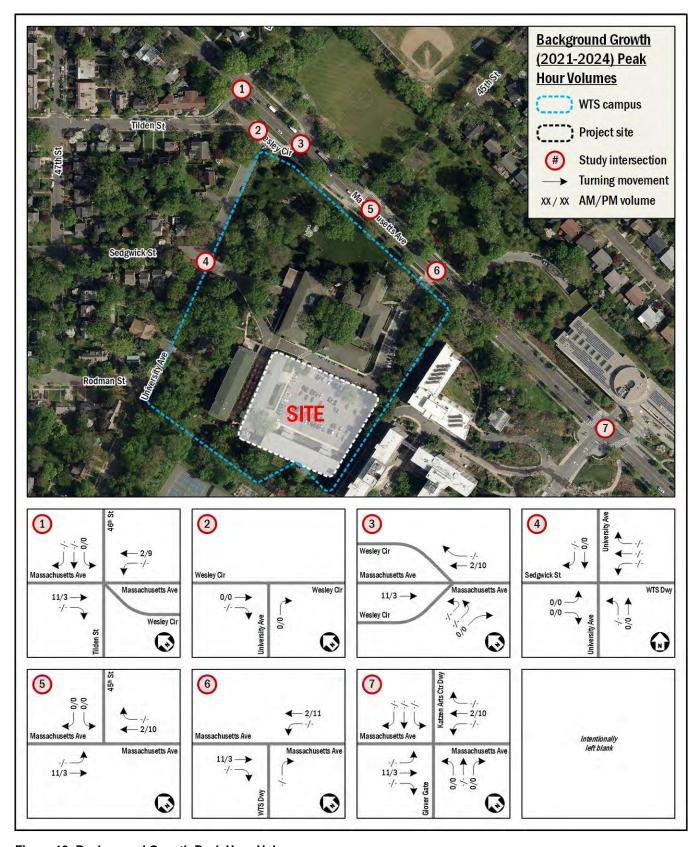


Figure 12: Background Growth Peak Hour Volumes

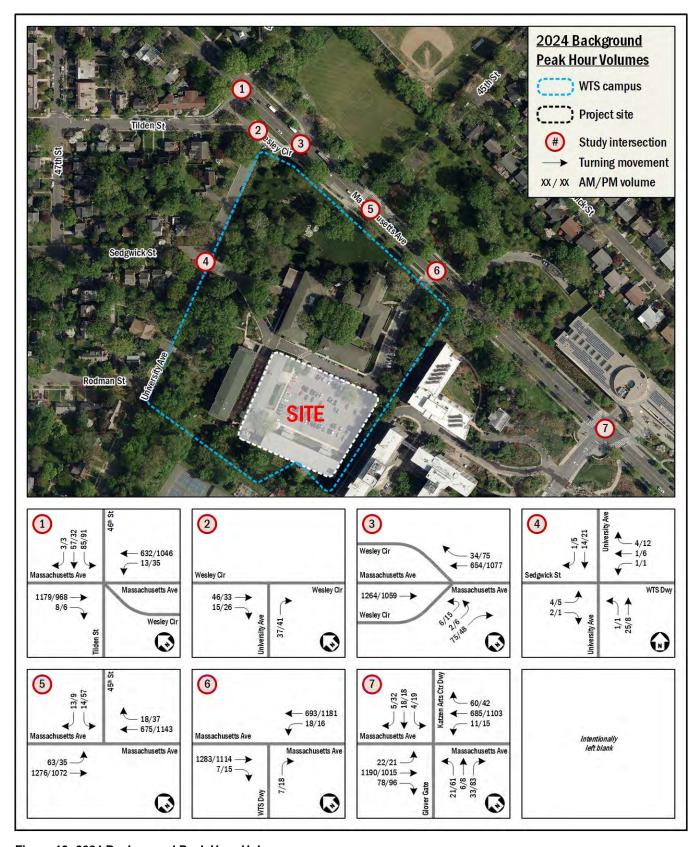


Figure 13: 2024 Background Peak Hour Volumes



Figure 14: Inbound Trip Distribution (Total Future with Existing Access and Total Future with Proposed Access)

Figure 15: Outbound Trip Distribution (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)



Figure 16: Outbound Trip Distribution (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)

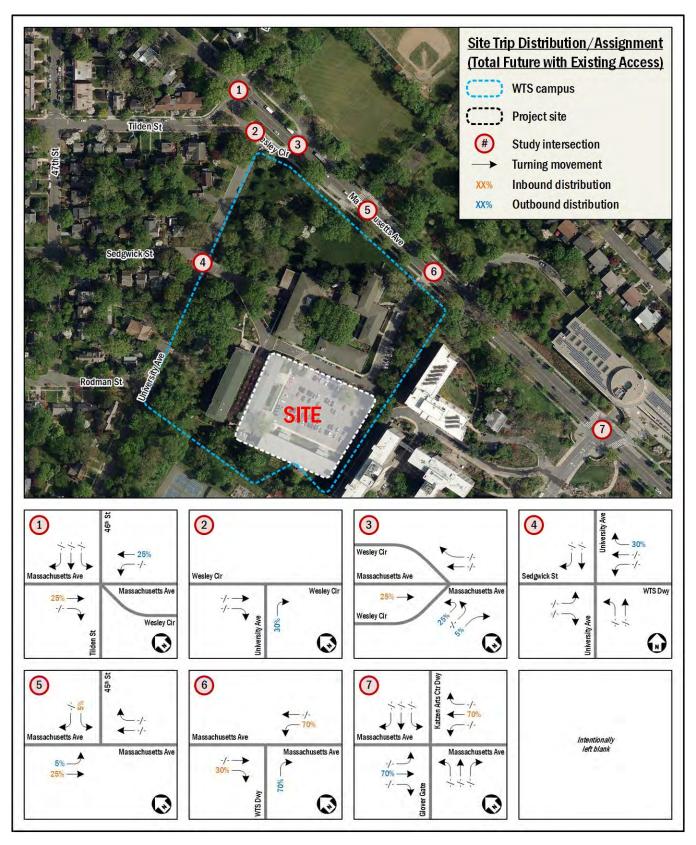


Figure 17: Trip Distribution at Study Intersections (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)

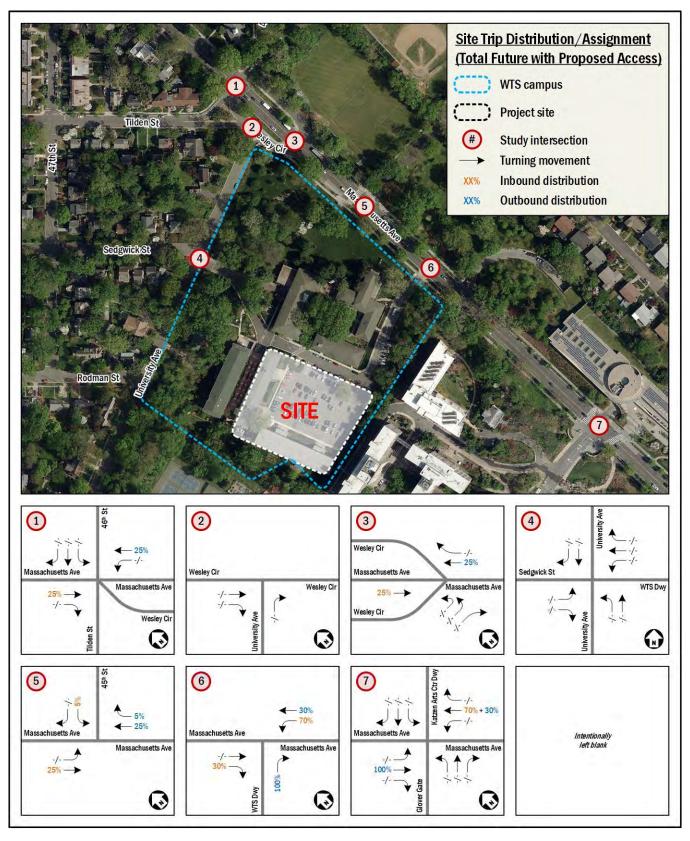


Figure 18: Trip Distribution at Study Intersections (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)

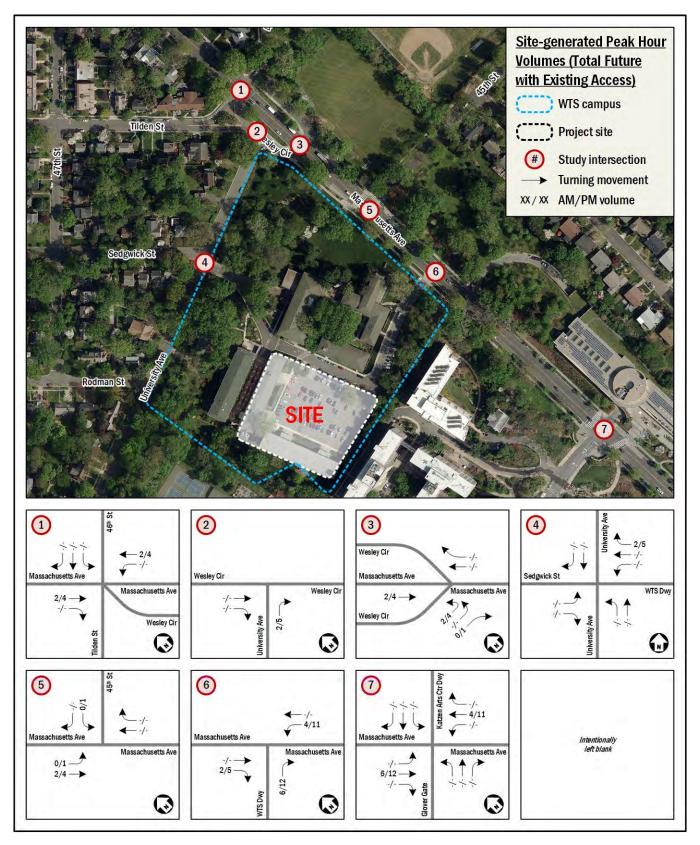


Figure 19: Site-generated Peak Hour Volumes (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)

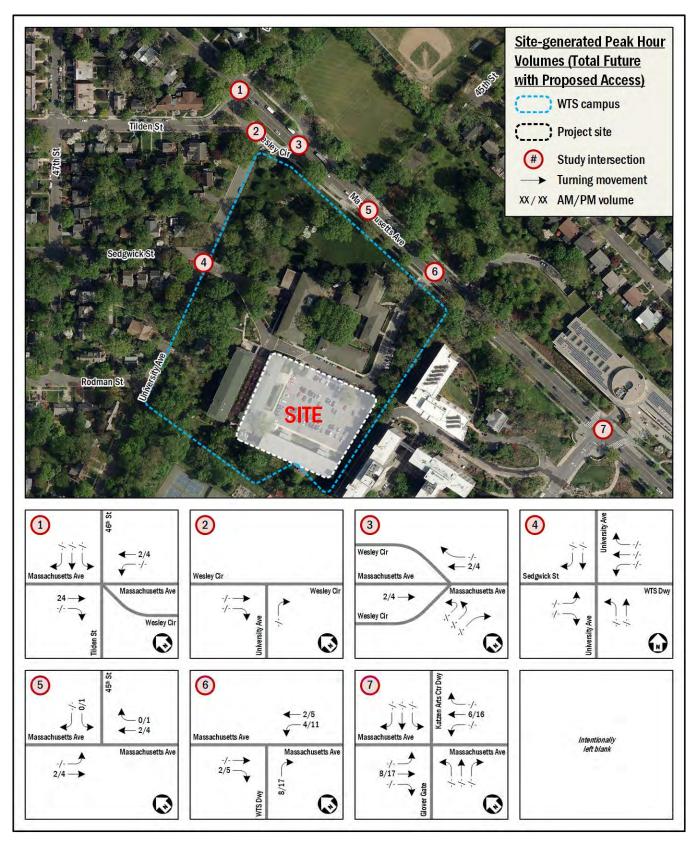


Figure 20: Site-generated Peak Hour Volumes (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)

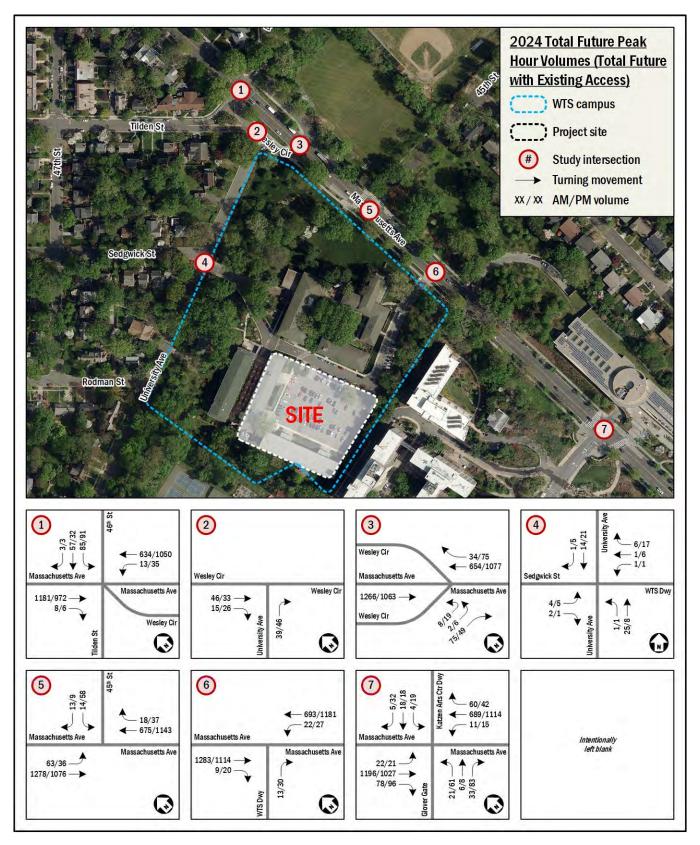


Figure 21: 2024 Total Future Peak Hour Volumes (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)

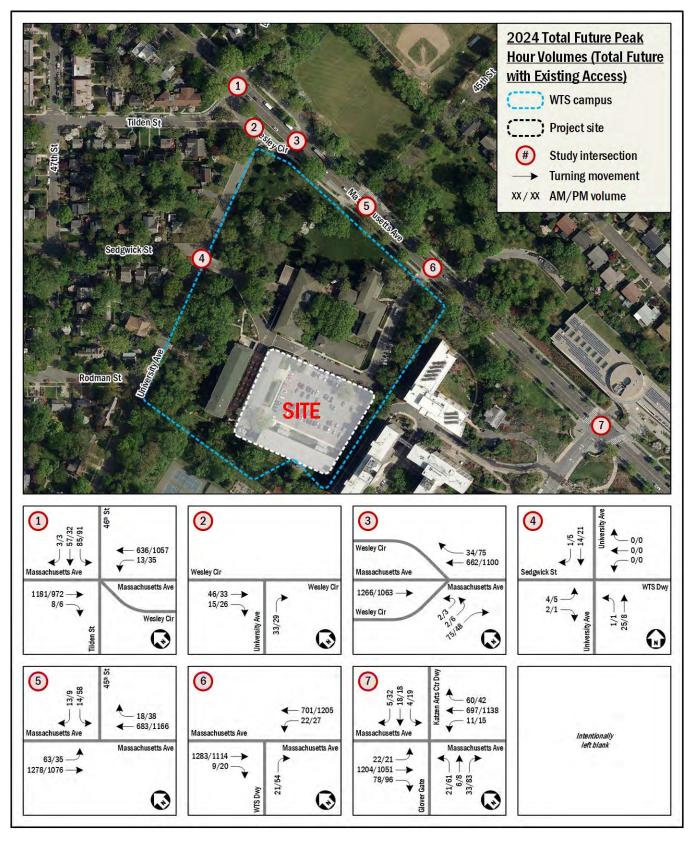


Figure 22: 2024 Total Future Peak Hour Volumes (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)

Table 4: LOS Comparison

	Intersection and Approach	Existing (2021)			Background (2024)				Future with Existing Access (2024) (w/ Existing Access Scenario)				Future with Proposed Access (2024) (University Dr Restricted During Peak Hours)				
			AM Peak		PM Peak		Peak	PM Peak		AM Peak		PM Peak		AM Peak		PM P	eak eak
			LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1.	Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW																
	Overall	11.2	В	8.6	Α	11.2	В	8.6	Α	11.2	В	8.6	Α	11.2	В	8.5	Α
	Southeastbound	10.9	В	6.7	Α	11.0	В	6.7	Α	11.1	В	6.8	Α	11.1	В	6.8	Α
	Northwestbound	2.6	Α	4.0	Α	2.6	Α	4.0	Α	2.6	Α	4.0	Α	2.5	Α	4.0	Α
	Northeastbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α
	Southwestbound	51.4	D	61.8	Е	51.4	D	61.8	Е	51.4	D	61.8	Е	51.4	D	61.8	Е
2.	University Ave & Wesley Cir NW																
	Eastbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0		0.0	
	Northbound	8.7	Α	8.7	Α	8.7	Α	8.7	Α	8.7	Α	8.7	Α	8.7	Α	8.7	Α
3.	Massachusetts Ave & Wesley Cir NW																
	Northbound (Eastbound)	14.1	В	41.3	Е	14.2	В	42.2	Е	15.2	С	47.9	Е	12.3	В	27.8	D
	Southeastbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α
	Northwestbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α
4.	University Ave & Sedgwick St/WTS Dwy NW																
	Eastbound	8.7	Α	8.8	Α	8.7	Α	8.8	Α	8.7	Α	8.9	Α	8.7	Α	8.7	Α
	Westbound	8.7	Α	8.7	Α	8.7	Α	8.7	Α	8.6	Α	8.7	Α	0.0	Α	0.0	Α
	Northbound	0.3	Α	0.7	Α	0.3	Α	0.7	Α	0.3	Α	0.7	Α	0.3	Α	0.7	Α
	Southbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α
5.	Massachusetts Ave & 45th St NW																
	Overall	0.5	Α	0.4	Α	0.5	Α	0.4	Α	0.5	Α	0.4	Α	0.5	Α	0.4	Α
	Southeastbound	0.7	Α	0.5	Α	0.7	Α	0.5	Α	0.7	Α	0.5	Α	0.7	Α	0.5	Α
	Northwestbound	0.1	Α	0.3	Α	0.1	Α	0.3	Α	0.1	Α	0.3	Α	0.1	Α	0.3	Α
	Southwestbound	0.0	Α	0.1	Α	0.0	Α	0.1	Α	0.0	Α	0.1	Α	0.0	Α	0.1	Α
6.	Massachusetts Ave & WTS Dwy NW																
	Northbound	14.8	В	380.1	F	14.9	В	385.5	F	15.1	С	611.8	F	15.3	С	1116.9	F
	Southeastbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α
	Northwestbound	1.3	Α	46.8	D	1.3	Α	48.0	D	1.6	Α	103.2	F	1.6	Α	103.1	Α
	<u>SimTraffic</u>																
	Northbound			31.4	С			29.9	С			32.5	С			28.3	С
	Southeastbound			1.3	Α			1.1	Α			1.2	Α			1.2	Α
	Northwestbound			4.8	Α			5.1	Α			6.3	Α			6.7	Α
7.	Massachusetts Ave & Glover Gate/Katzen Dwy NW																
	Overall	12.7	В	13.7	В	12.9	В	13.7	В	12.9	В	13.8	В	13.1	В	14.0	В
	Southeastbound	11.9	В	10.5	В	12.1	В	10.5	В	12.2	В	10.6	В	12.3	В	10.9	В
	Northwestbound	10.0	В	10.6	В	10.1	В	10.7	В	10.1	В	10.8	В	10.3	В	11.0	В
	Northeastbound	48.8	D	47.1	D	48.8	D	47.1	D	48.8	D	47.1	D	48.8	D	47.1	D
	Southwestbound	47.4	D	45.4	D	47.4	D	45.4	D	47.4	D	45.4	D	47.4	D	45.4	D

Table 5: v/c Comparison

	5: v/c Comparison Intersection and Movement	Existin	g (2021)	Backgrou	Background (2024)		Future with Existing Access (2024) (w/ Existing Access Scenario)		Future with Proposed Access (2024) (University Dr Restricted During Peak Hours)	
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	
		v/c	v/c	v/c	v/c	v/c	v/c	v/c	v/c	
1.	Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW									
	Southeastbound Thru	0.62	0.49	0.62	0.49	0.63	0.49	0.63	0.49	
	Southeastbound Right	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
	Northwestbound Thru	0.37	0.55	0.37	0.55	0.37	0.56	0.38	0.56	
	Southwestbound Thru	0.57	0.64	0.57	0.64	0.57	0.64	0.57	0.64	
2.	University Ave & Wesley Cir NW									
	Eastbound TR	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	
	Northbound Right	0.04	0.05	0.04	0.05	0.04	0.05	0.04	0.03	
3.	Massachusetts Ave & Wesley Cir NW									
	Northbound (Eastbound) LTR	0.18	0.43	0.18	0.43	0.20	0.49	0.14	0.28	
	Southeastbound Thru	0.38	0.32	0.38	0.32	0.38	0.33	0.38	0.33	
	Northwestbound TR	0.26	0.44	0.26	0.44	0.26	0.44	0.27	0.45	
4.	University Ave & Sedgwick St/WTS Dwy NW									
	Eastbound LR	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
	Westbound LTR	0.01	0.02	0.01	0.02	0.01	0.03	0.01	0.00	
	Northbound LT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Southbound TR	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	
5.	Massachusetts Ave & 45th St NW									
	Southeastbound LT	0.54	0.45	0.54	0.45	0.54	0.46	0.54	0.45	
	Northwestbound TR	0.23	0.38	0.23	0.39	0.23	0.39	0.23	0.39	
	Southwestbound LR	0.02	0.05	0.02	0.05	0.02	0.05	0.02	0.05	
6.	Massachusetts Ave & WTS Dwy NW									
	Northbound Right	0.02	0.87	0.02	0.88	0.04	1.47	0.06	2.67	
	Southeastbound Thru	0.55		0.56		0.56		0.56		
	Southeastbound TR	0.28	0.74	0.28	0.74	0.28	0.74	0.29	0.74	
	Northwestbound LT	0.04	0.52	0.04	0.53	0.05	0.89	0.05	0.89	
	Northwestbound Thru		0.51		0.51		0.51		0.53	
7.	Massachusetts Ave & Glover Gate/Katzen Dwy NW									
	Southeastbound LTR	0.70	0.69	0.70	0.69	0.71	0.70	0.71	0.71	
	Northwestbound LT	0.66		0.67		0.67		0.68		
	Northwestbound Right	0.08		0.08		0.08		0.08		
	Northwestbound LTR		0.62		0.63		0.63		0.65	
	Northeastbound LT	0.25	0.41	0.25	0.41	0.25	0.41	0.25	0.41	
	Northeastbound Right	0.24	0.45	0.24	0.45	0.24	0.45	0.24	0.45	
	Southwestbound LTR	0.15	0.33	0.15	0.33	0.15	0.33	0.15	0.33	

Table 6: 50th & 95th Percentile Queuing Comparison (in feet)

	Intersection and Lane Group	Storage Length (ft)				Backgro	Background (2024)				ting Acces		Future with Proposed Access (2024) (University Dr Restricted During Peak Hours)					
				Peak		Peak		Peak		Peak		Peak		Peak		Peak		Peak
			50th	95th	50th	95th	50th	95th	50th	95th	50th	95th	50th	95th	50th	95th	50th	95th
1.	Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW																	
	Southeastbound Thru	310	237	299	138	176	242	303	140	177	242	305	141	178	242	305	141	178
	Southeastbound Right	310	2	6	1	4	2	6	1	4	2	6	1	4	2	6	1	4
	Northwestbound Thru	170	18	24	71	84	17	24	72	84	18	24	72	84	17	22	71	83
	Southwestbound Thru	540	106	179	95	#175	106	179	95	#175	106	179	95	#175	106	179	95	#175
2.	University Ave & Wesley Cir NW																	
	Eastbound TR	510		0		0		0		0		0		0		0		0
	Northbound Right	330		3		4		3		4		3		4		3		2
3.	Massachusetts Ave & Wesley Cir NW																	
	Northbound (Eastbound) LTR	50		16		48		16		49		18		58		12		27
	Southeastbound Thru	170		0		0		0		0		0		0		0		0
	Northwestbound TR	160		0		0		0		0		0		0		0		0
4.	University Ave & Sedgwick St/WTS Dwy NW																	
	Eastbound LR	340		0		1		0		1		0		1		0		1
	Westbound LTR	100		0		2		0		2		1		2		0		0
	Northbound LT	320		0		0		0		0		0		0		0		0
	Southbound TR	320		0		0		0		0		0		0		0		0
5.	Massachusetts Ave & 45th St NW																	
	Southeastbound LT	200	18	3	6	0	18	4	6	0	18	3	7	0	18	4	7	0
	Northwestbound TR	200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Southwestbound LR	380	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.	Massachusetts Ave & WTS Dwy NW			-	-	-		-	-	-		-	-	-		-	-	
	Northbound Right	290		2		64		2		64		3		106		5		191
	Southeastbound Thru	200		0				0				0				0		
	Southeastbound TR	200		0		0		0		0		0		0		0		0
	Northwestbound LT	80		3		44		3		44		4		78		4		78
	Northwestbound Thru	80				0				0				0				0
7.	Massachusetts Ave & Glover Gate/Katzen Dwy NW																	_
	Southeastbound LTR	420	286	394	210	242	295	400	210	242	298	401	213	245	303	404	219	251
	Northwestbound LT	480	250	370			253	376			255	380			262	389		
	Northwestbound Right	480	0	10			0	10			0	10			0	10		
	Northwestbound LTR	480			230	291			233	295			237	300			247	312
	Northeastbound LT	100	21	52	52	102	21	52	52	102	21	52	52	102	21	52	52	102
	Northeastbound Right	100	0	12	0	52	0	12	0	52	0	12	0	52	0	12	0	52
	Southwestbound LTR	40	17	46	28	74	17	46	28	74	17	46	28	74	17	46	28	74

Transit Facilities

This chapter discusses the existing and proposed transit facilities near the site and evaluates the overall transit impacts of the site.

This chapter concludes that:

- The project site is well-served by existing transit;
- The project site is approximately 1.1 miles from the Tenleytown-AU Metro station;
- The project site is served by two (2) Metrobus routes and three (3) AU shuttle routes; and
- The project is expected to generate a manageable amount of transit trips that existing transit service is capable of handling.

Existing Transit Service

The study area is served by Metrorail and the Metrobus and American University (AU) shuttle systems. Combined, these transit services provide local and regional transit connections and link the site with residential, employment, commercial, and cultural destinations throughout the region. Figure 23 identifies the transit routes, stations, and stops in the study area.

The site is located 1.1 miles from the Tenleytown-AU Metro station on the Red Line, which travels between the Glenmont and Shady Grove stations by way of downtown Washington, DC.

The site is also served by three (3) AU shuttle routes, which WTS students can ride for free, and two (2) Metrobus routes. These bus routes connect the site to many areas of the region, as well as several Metro stations. Table 7 shows a summary of the bus route information for the routes that serve the site, including service hours, headway, and distance to the nearest bus stop.

Table 8 shows WMATA's recommended amenities for each type of bus stop. Table 9 shows a detailed inventory of the amenities appearing at each bus stop within the transit study area.

Proposed Transit Service

There are no known planned or proposed transit improvements in the project study area.

Site-Generated Transit Impacts

The proposed development is projected to generate 39 transit trips (17 inbound, 22 outbound) during the AM peak hour and 90 transit trips (45 inbound, 45 outbound) during the PM peak hour.

It is expected that existing transit service can accommodate these new site-generated trips.

Table 7: Local Bus Route Information

Route	Route Name	Service H	lours at Stop Close	est to Site	Headway	Walking
Number	Route Name	Weekdays	Saturdays	Sundays	(minutes)	Distance to Nearest Stop
M4	Nebraska Avenue Line	6:14am-9:14pm	-	-	11 - 36	0.3 mi (6 min)
N2,4,6	Massachusetts Avenue Line	5:44am-12:07am	5:40am-11:59pm	6:22am-11:14pm	4 - 45	0.1 mi (2 min)
-	AU Shuttle Blue Route	6:00am-12:15am	7:00am-12:15am	8:00am-12:15am	15 - 30	0.2 mi (4 min)
-	AU Shuttle Green Route	7:55am-9:40pm	-	-	85 - 97	0.3 mi (6 min)
-	AU Shuttle Red Express Route	7:00am-11:05pm	8:45am-4:30pm	-	15 - 30	0.2 mi (5 min)

Table 8: WMATA Recommended Bus Stop Amenities

Amonitor	Basic	Enhanced	Transit	
Amenity	< 50 daily boardings	≥ 50 daily boardings	Stop	Center Stop
Bus stop flag	•	•	•	•
Route map and schedule	•	•	•	•
5' x 8' landing pad	•	•	•	•
40'/60' x 8' landing pad			•	•
4' sidewalk	•	•	•	•
Bench		•	•	•
Shelter		•	•	•
Lighting (on shelter or within 30' if overhead)	Recommended for stops evening		•	•
Dynamic information signage	C	Contingent on presence of s	helter	
Trash and recycling receptacles	Recommende	d where surrounding uses n	nay generate tra	sh

Source: 2019 WMATA Bus Stop Amenity Reference Guide

Table 9: Bus Stop Inventory

						-	Amenities	;			
Location	Stop ID	Routes Served	Bus stop flag	Route map & sched- ule	Land -ing pad	Side- walk	Bench	Shel -ter	Dy- namic info sign	Light -ing	Trash Recp
Massachusetts Ave & Fordham Rd (EB)	1002411	N4, N6	•	•	•	•	•	•		•	•
Massachusetts Ave & 48th St (WB)	1002407	N4, N6	•		•	•					•
Massachusetts Ave & Van Ness St (EB)	1002388	N4, N6	•	•	•	•				•	•
Massachusetts Ave & Van Ness St (WB)	1002387	N4, N6	•	•	•	•				•	
Massachusetts Ave & 46th St (WB)	1002341	N4, N6	•	•		•				•	
Massachusetts Ave & Filden St (EB)	1002339	N4, N6	•		•	•				•	
Massachusetts Ave & 45th St (EB)	1002310	N4, N6	•	•	•	•	•	•		•	•
Massachusetts Ave & 45th St (WB)	1002323	N4, N6	•	•	•	•				•	•
Massachusetts Ave & Nard Cir (WB) / Katzen Arts Center	1002283 / 114	N4, N6 / Red Express, Green	•	•	•	•				•	•
Massachusetts Ave & Nard Cir (EB) / Massachusetts Ave NW	1002275 / 115	N4, N6 / Red Express, Green	•	•	•	•	•	•		•	
Nebraska Ave & Ward Cir SB) / Kerwin Hall	1003092 / 109	M4, N2 / Blue, Green	•	•	•	•				•	
Nebraska Ave & N Drwy Amer Univ (NB) / East Campus	1002227 / 112	M4, N2, N6 / Green	•	•		•	•	•		•	
New Mexico Ave & Nebraska Ave (EB)	1002205	N2, N6	•	•		•				•	•
New Mexico Ave & Nebraska Ave (WB)	1002201	N2	•	•	•	•				•	•
Nebraska Ave & New Mexico Ave (SB)	1002204	M4	•		•	•				•	
Nebraska Ave & New Mexico Ave (NB)	1002197	M4	•		•	•				•	
Massachusetts Ave & Westover PI (EB)	1002229	N4, N6	•	•	•	•				•	
Massachusetts Ave & Vard Cir (WB)	1002258	N4, N6	•	•	•	•					•
Nebraska Ave & Ward Cir SB) / Nebraska Hall - nbound	1003710 / 108	M4, N2 / Red Express, Blue	•	•	•	•				•	
Nebraska Ave & Ward Cir NB) / Nebraska Hall - Dutbound	1002284 / 102	M4, N2 / Red Express, Blue	•	•	•	•	•	•		•	•
Nebraska Ave & #3700 SB)	1002292	M4, N2	•	•	•	•				•	
Nebraska Ave & Naval Sec Ctr (NB)	1002304	M4, N2	•	•	•	•	•	•		•	•
Spring Valley Building	111	Red Express, Green	•		•	•	•	•		•	•
Kogod	101	Blue			•	•	•	•		•	•
Letts Anderson	100	Blue, Green			•	•	•	•		•	•

AU Shuttle routes, stop locations, and stop ID's noted in italics.

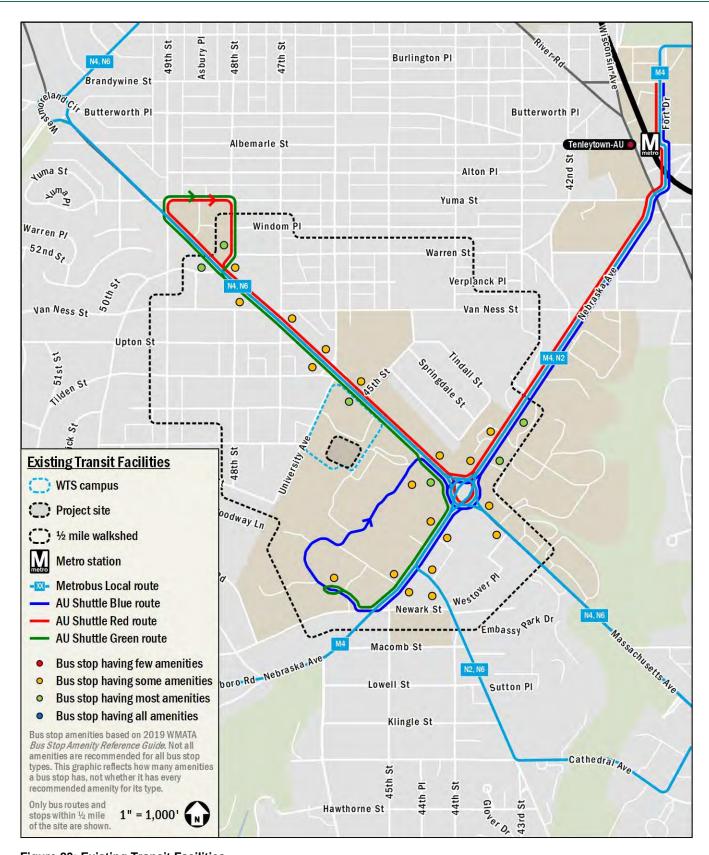


Figure 23: Existing Transit Facilities

Pedestrian Facilities

This chapter summarizes existing pedestrian access to the site and reviews the impacts of the site on the pedestrian network.

The following conclusions are reached within this chapter:

- Despite some incidences of missing sidewalks, curb ramps, and crosswalks on minor streets near the project site, there are generally adequate pedestrian facilities along primary walking routes between the site and major local destinations;
- The area surrounding the site is free of major barriers to pedestrian connectivity;
- The project is expected to generate pedestrian trips to and from nearby destinations, and the pedestrian facilities surrounding the project can accommodate these new trips; and
- While sidewalks are provided along the Massachusetts
 Avenue driveway, no sidewalks are provided along the
 University Avenue site driveway or along University
 Avenue between the driveway and Wesley Circle.

Pedestrian Study Area

Pedestrian facilities within a quarter-mile of the site were evaluated. There are several streets within the study area that do not have sidewalks, particularly in the residential areas immediately west and northeast of the site. There are also some sidewalks nearby that do not meet minimum width requirements, in addition to having missing or non-compliant crosswalks and curb ramps. Despite these shortcomings, there are generally adequate pedestrian facilities along Massachusetts Avenue NW, which is a primary walking route to major local destinations.

Figure 24 shows suggested pedestrian pathways to nearby destinations, including walking time and distances.

Existing Pedestrian Infrastructure

A detailed inventory of the existing pedestrian facilities within the study area is shown on Figure 25. Sidewalks, crosswalks, and curb ramps are evaluated based on the guidelines set forth by DDOT's *Design and Engineering Manual (2019)* in addition to Americans with Disabilities Act (ADA) standards. These facilities are shown within their respective land use types based on DC's Zoning Regulations of 2016, which determine which of DDOT's sidewalk width requirements apply. These sidewalk width requirements are shown in Table 10.

Table 10: DDOT Sidewalk Width Requirements

Street Type	Curb Walk	Tree/Fur -nishing Zone	Sidewalk Unobstructed Clear Width	Total Minimum Sidewalk Width
Low to Moderate Density Residential	None	4 - 6 feet	6 feet	10 feet
High Density Residential or Light Commercial	1 foot	4 - 8 feet	8 feet	13 feet
Central DC and Commercial Areas	1 - 2 feet	4 - 10 feet	10 feet	16 feet

Source: DDOT Design and Engineering Manual

Sidewalks

As shown on Figure 25, the pedestrian study area includes streets within the "Low to Moderate Density Residential" and "High Density Residential or Light Commercial" categories of sidewalk width requirements. There are several streets within the study area that do not have sidewalks, particularly in the residential areas immediately west and northeast of the site. There are also some sidewalks nearby that do not meet minimum width requirements. In some cases, as along the south side of Massachusetts Avenue NW, the sidewalk meets the width requirement of a lower intensity land use, but not its applicable land use. In other cases, as on the American University campus, the sidewalk is not accompanied by a tree/furnishing zone.

Curb ramps

ADA standards require that all curb ramps be provided wherever an accessible route crosses a curb and must have a detectable warning. Additionally, curb ramps shared between two crosswalks are not desired but where they are present, a 48" clear space is required outside active vehicle traffic lanes and within marked crossings. As shown on Figure 25, there are some intersections near the project site that are missing a curb ramp and/or crosswalk on one or more leg.

Crosswalks

DDOT's *Design and Engineering Manual (2019)* requires crosswalks at all intersections or mid-block locations controlled by vehicular and/or pedestrian traffic signals or all-way stop signs. Additionally, high-visibility crosswalks are required at all

uncontrolled crosswalks and all crosswalks (including signalized or stop-controlled crosswalks) leading to a block with a school, within a designated school zone area, along a designated school walking route, on blocks adjacent to a Metro station, in areas with moderate to high pedestrian volumes, and in locations with high frequencies of conflicts with pedestrians and turning vehicles.

As shown on Figure 25, there are several instances near the site where crosswalks are not present, or a crosswalk is present but not a high-visibility type at a location where it is required.

Proposed Pedestrian Infrastructure

The Wesley Campus Plan will provide a new sidewalk and streetscape along the buildings northern side to connect to provide links to adjacent pedestrian infrastructure within the campus.

The Applicant is also coordinating with American University (AU) on options to maintain the existing pedestrian connection between the two campuses, located on the east side of the project site.

Site-Generated Pedestrian Impacts

The proposed development is projected to generate 19 pedestrian trips (8 inbound, 11 outbound) during the AM peak hour and 45 pedestrian trips (23 inbound, 22 outbound) during the PM peak hour.

The origins and destinations of these pedestrian trips are likely to be:

- Retail and restaurant locations; and
- Neighborhood destinations such as libraries and parks.

In addition to these trips, the transit trips generated by the site will also generate pedestrian demand between the site and nearby bus stops. It is expected that existing pedestrian facilities can accommodate these new site-generated trips.

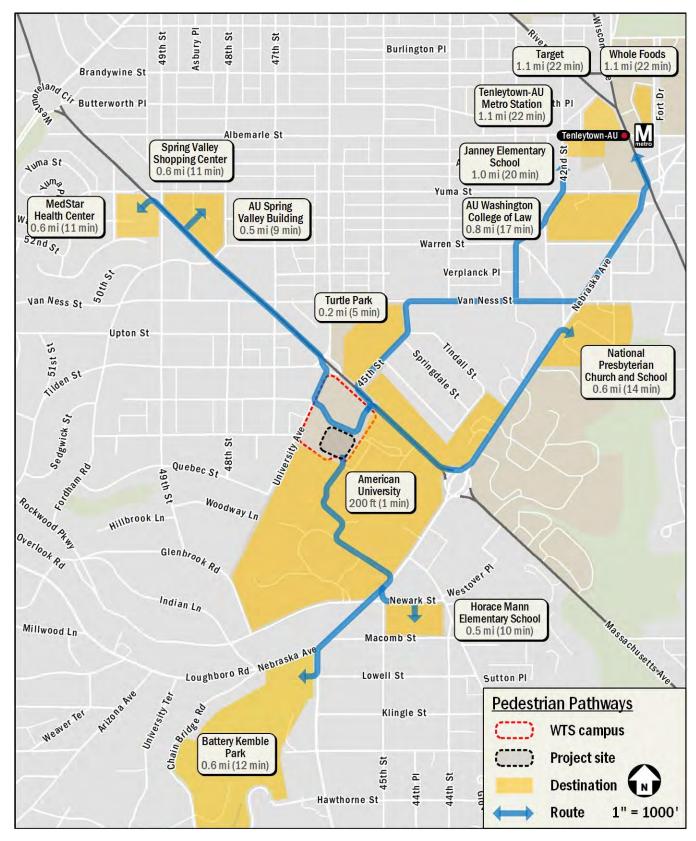


Figure 24: Existing Pedestrian Pathways

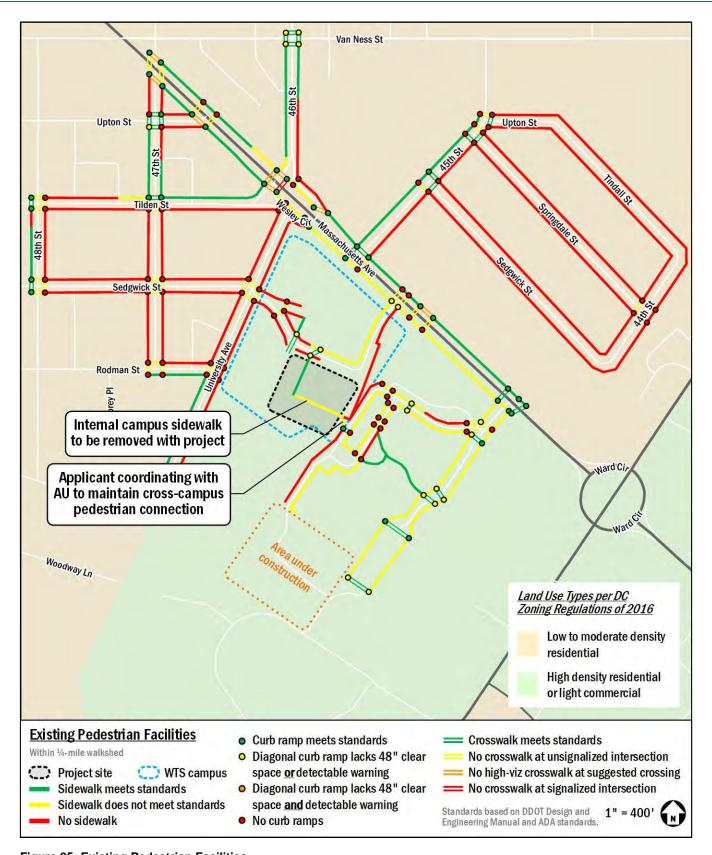


Figure 25: Existing Pedestrian Facilities

Bicycle Facilities

This chapter summarizes existing bicycle access to the site and reviews the impacts of the site on the bicycle network.

The following conclusions are reached within this chapter:

- The site is proximate to several on-street bicycle facilities;
- Several planned and proposed bicycle projects will improve bicycle access to the site;
- The project is expected to generate a manageable number of bicycle trips; therefore, site-generated bicycle trips can be accommodated on existing infrastructure; and
- The project will include short- and long-term bicycle parking that meets zoning requirements.

Existing Bicycle Facilities

The site is located approximately 0.5 miles northwest of the bike lanes on New Mexico Avenue NW, 0.7 miles southwest of the bike lanes on Van Ness Street NW, and 0.5 miles southwest of the on-street signed bike routes on 42nd and 43rd Streets NW. Using these facilities, bicyclists have access to several off-street bike facilities, such as the Rock Creek Trail and the Klingle Valley Trail.

Existing bicycle facilities are shown on Figure 26.

Capital Bikeshare

In addition to personal bicycles, the Capital Bikeshare program provides an additional cycling options for residents, employees, and visitors of the proposed project. The program has placed over 500 bikeshare stations across the Washington, DC metropolitan area with over 4,500 bicycles in the fleet. The following Capital Bikeshare stations are within a quarter-mile of the site:

- A 14-dock station at Ward Circle / American University,
 0.2 miles east of the site; and
- A 19-dock station at American University East Campus,
 0.4 miles southeast of the site.

Figure 26 illustrates these and other Capital Bikeshare locations in the area.

Shared Mobility

Shared mobility service in the District is provided by eight (8) electric-assist scooter (e-scooter) and electric-assist bicycle (e-

bike) companies including Bird, Lime, Lyft, Razor, Skip, Spin, Helbiz, and Jump. These Personal Mobility Devices (PMDs) are provided by private companies that give registered users access to a variety of e-scooter and e-bike options. These devices are used through each company-specific mobile phone application. Many PMDs do not have designated stations where pick-up/drop-off activities occur like with Capital Bikeshare; instead, many PMDs are parked in public space, most commonly in the "furniture zone" (the portion of sidewalk between where people walk and the curb, often where other street signs, street furniture, trees, parking meters, etc. are located). Currently, PMD pilot/demonstration programs are underway in Arlington County, the District, Fairfax County, the City of Alexandria, and Montgomery County.

Planned Bicycle Facilities

There are several bicycle improvements near the site that are planned and scheduled to open in the near future. These are shown on Figure 27.

DDOT Bikeways Expansion

DDOT's "20 by 22" initiative is a plan to build 20 miles of new protected bike lanes in the District by 2022. The plan identifies the following street segments in the project site area to receive protected bike lanes:

- Massachusetts Avenue NW from the Maryland border to Ward Circle;
- Nebraska Avenue NW from Ward Circle to Warren Street; and
- New Mexico Avenue NW from Nebraska Avenue to Reservoir Road.

Proposed Bicycle Facilities

Several bicycle improvements are proposed near the site but are not yet funded or planned. These are shown on Figure 27.

MoveDC Bicycle Element

The bicycle element of *MoveDC*, the District's multimodal longrange transportation plan, includes the following bicycle improvements near the development that are proposed but not yet funded or planned:

 Bicycle improvements along Massachusetts Avenue NW, Nebraska Avenue NW, Arizona Avenue NW,

Loughboro Road NW, 49th Street NW, Albermarle Street NW, Glenbrook Road NW, and Rockwood Parkway NW.

Capital Bikeshare Development Plan

DDOT's Capital Bikeshare Development Plan was originally released in 2016 to guide the continued growth of Capital Bikeshare in the District of Columbia. The most recent update of the Development Plan was released in 2020 and includes the following:

- A planned station at Turtle Park, 0.2 miles from the site:
- A proposed station at Quebec Street and 48th Street NW, 0.4 miles from the site; and
- A proposed station at 47th Street and Warren Street NW, 0.5 miles from the site.

Site-Generated Bicycle Impacts

This section summarizes the impacts of the project on bicycling conditions surrounding the project site.

On-site Bicycle Infrastructure

The project will meet zoning requirements by providing at least 62 long-term bicycle parking spaces inside the building and at least 12 short-term bicycle parking spaces.

Bicycle Trip Generation

The proposed project is projected to generate four (4) bicycle trips (2 inbound, 2 outbound) during the AM peak hour and 10 bicycle trip (4 inbound, 6 outbound) during the PM peak hour.

It is expected that existing bicycle facilities can accommodate these new site-generated trips.

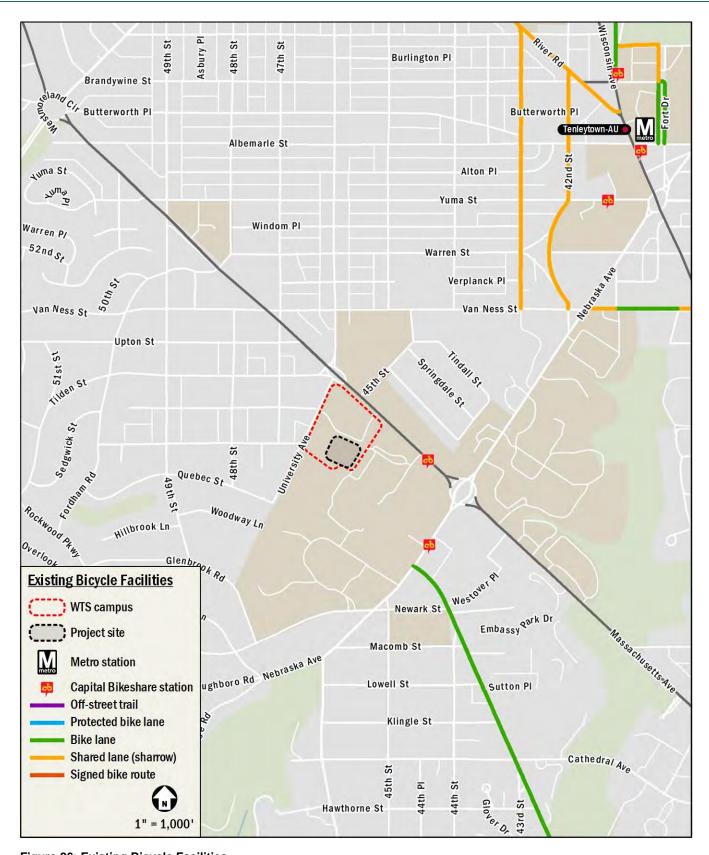


Figure 26: Existing Bicycle Facilities

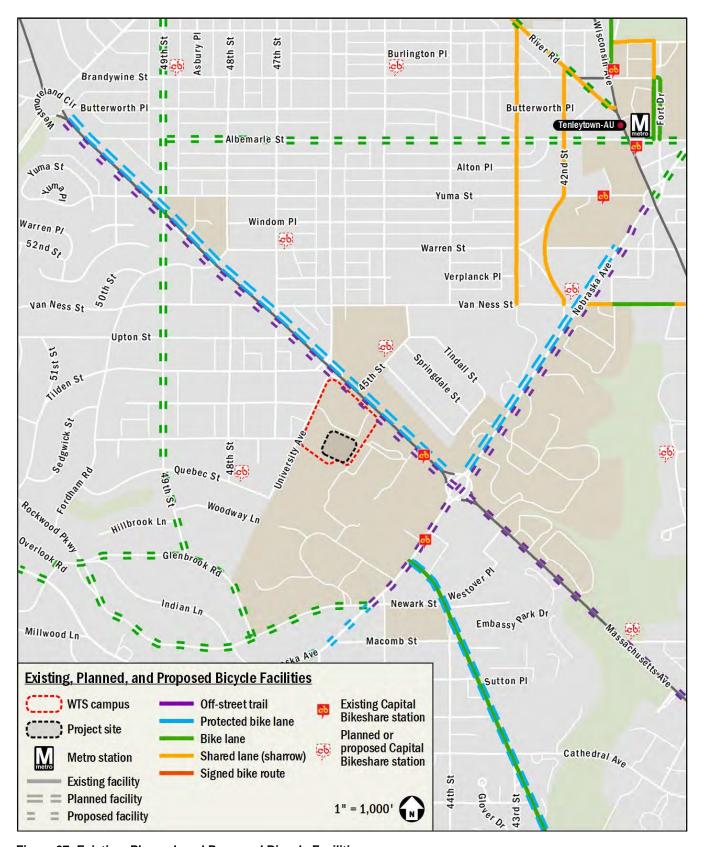


Figure 27: Existing, Planned, and Proposed Bicycle Facilities

Safety Analysis

This chapter qualitatively reviews any vehicle, pedestrian, or bicycle conflicts at the study area intersections or street links within the study area. This review notes any intersections within the study area that have been identified by DDOT as high crash locations and makes recommendations to improve safety conditions. These recommendations are presented for DDOT's consideration, not for the Applicant to complete as part of the proposed project. It should be noted that a new pedestrian HAWK signal has recently been installed to provide signalized pedestrian crossing of Massachusetts Avenue at 45th Street.

Summary of Safety Analysis

A safety analysis was performed to determine if there are any intersections that pose obvious conflicts with vehicles, pedestrians, or bicyclists. This was determined based on data included in DDOT's most recent *Traffic Safety Statistics Report* (2016-2018), *Vision Zero Action Plan*, and Open Data DC Vision Zero Safety data.

Based on available data, no intersections in the study area were identified by DDOT as hazardous/high crash intersections.

However, a qualitative review of the crash data available through the DDOT-maintained and publicly-available "Crashes in DC" database was performed to identify study intersections in which conditions for vehicles, pedestrians, and bicyclists can be improved.

Based on a review of facilities in the area and crash data, two (2) intersections were identified for further evaluation. The following section details the potential conflicts at the identified study area intersections.

Potential Impacts

This section reviews the intersections identified to pose potential conflicts to vehicles, pedestrians, or bicyclists.

Massachusetts Avenue and Wesley Circle NW

While this intersection was not identified in DDOT's *Traffic Safety Statistics Report* (2016-2018) as having comparatively high rates of crash frequency, the DDOT-maintained "Crashes in DC" database shows a moderate number of crashes at this intersection since 2016, as shown on Figure 28, including one (1) pedestrian-involved crash, as shown on Figure 29.

This intersection operates as a four-legged, unsignalized intersection. Crosswalks are currently provided at every location

where there is a traffic signal and/or stop sign, which excludes the through lanes of Massachusetts Avenue NW. However, the crosswalks at this intersection are not high-visibility although they are in an area with moderate to high pedestrian volumes. Curb ramps that include detectable warnings per ADA standards are provided on every corner.

As shown in Figure 27, protected bike lanes are proposed along Massachusetts Avenue NW that would likely improve conditions for both bicyclists and pedestrians at this intersection. Protected bike lanes could improve conditions for bicyclists by providing physical separation from vehicular traffic, and could improve conditions for pedestrians by reducing the distance across vehicle lanes pedestrians needed to cross.

This report recommends that DDOT perform a safety audit at this intersection as part of its Traffic Safety Assessment program to further evaluate the extent of safety issues and determine if any action is needed.

Massachusetts Avenue and Glover Gate/Katzen Driveway NW

While this intersection was not identified in DDOT's *Traffic Safety Statistics Report* (2016-2018) as having comparatively high rates of crash frequency, the DDOT-maintained "Crashes in DC" database shows a moderate number of crashes at this intersection since 2016, as shown on Figure 28, including two (2) pedestrian-involved crashes and one (1) bicycle-involved crash, as shown on Figure 29 and Figure 30.

This intersection operates as a four-legged, signalized intersection. Crosswalks are currently provided at every leg of the intersection. Curb ramps that include detectable warnings per ADA standards are provided on every corner.

As shown in Figure 27, protected bike lanes are proposed along Massachusetts Avenue NW that would likely improve conditions for both bicyclists and pedestrians at this intersection. Protected bike lanes could improve conditions for bicyclists by providing physical separation from vehicular traffic, and could improve conditions for pedestrians by reducing the distance across vehicle lanes pedestrians needed to cross.

This report recommends that DDOT perform a safety audit at this intersection as part of its Traffic Safety Assessment program to further evaluate the extent of safety issues and determine if any action is needed.

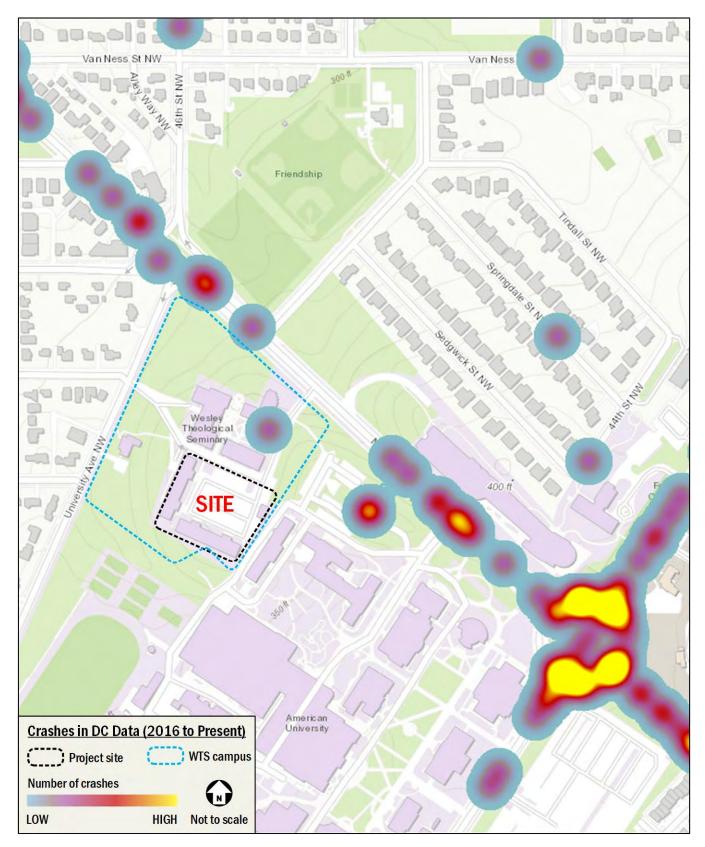


Figure 28: Total Crashes (2016 to present)

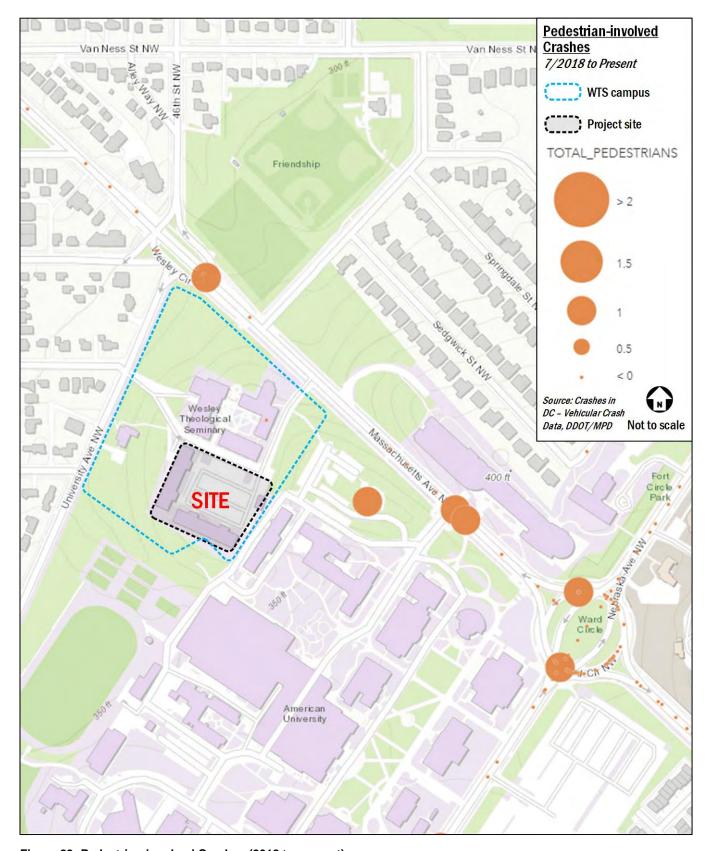


Figure 29: Pedestrian-involved Crashes (2018 to present)

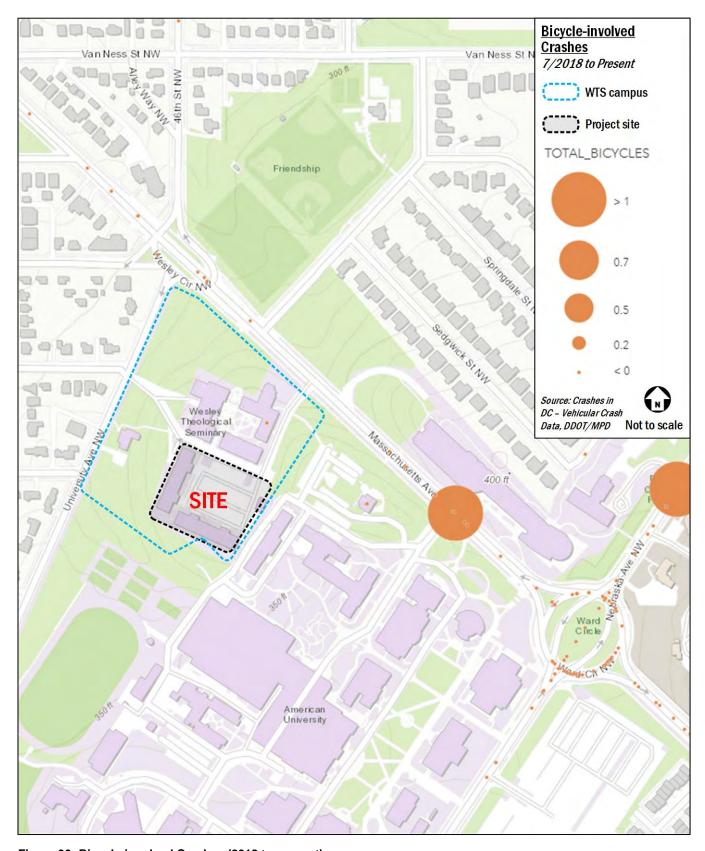


Figure 30: Bicycle-involved Crashes (2018 to present)

Summary and Conclusions

This report has evaluated whether the Wesley Campus Plan will generate a detrimental impact to the transportation network surrounding the site. This evaluation is based on a technical comparison of the Existing Conditions, Background Conditions, and Total Future Conditions. This report concludes that **the project will not have a detrimental impact** to the surrounding transportation network assuming the proposed site design elements are implemented.

Proposed Project

The development site location is within the WTS campus, which is generally bounded by University Avenue NW to the west, Massachusetts Avenue NW to the north, and the American University (AU) campus to the east and south. The portion of the site to be redeveloped is currently occupied by a surface parking lot and two (2) student housing and administration buildings.

The proposed project includes removing the surface parking lot and existing buildings, replacing them with a new student housing building containing approximately 215 dwelling units, 1,535 square feet of retail spaces, and 350 below-grade parking spaces.

The proposed student housing building will be for WTS and AU students and may also house immediate families, faculty and staff and building employees. The housing building will not otherwise serve the general public.

Multimodal Overview

Trip Generation

The Wesley Campus Plan is expected to generate new trips within the surrounding transportation network across all transportation modes during the morning and afternoon peak hours. However, with the implementation of a Transportation Demand Management (TDM) plan as part of the project, the resulting new trips generated by the project will not have a detrimental impact on the transportation network. The multimodal trip generation for the proposed project is as follows:

- AM Peak Hour: 14 vehicles/hour, 39 transit riders/hour, four (4) bicycle trips/hour, and 19 walking trips/hour.
- PM Peak Hour: 33 vehicles/hour, 90 transit riders/hour,
 10 bicycle trips/hour, and 45 walking trips/hour.

Transit

The site is located 1.1 miles from the Tenleytown-AU Metro station on the Red Line and is served by local bus routes.

The site is expected to generate a manageable amount of transit trips, and the existing service can accommodate these new trips.

Pedestrian

The site is surrounded by a generally adequate pedestrian network. Despite some incidences of missing sidewalks, curb ramps, and crosswalks on minor streets near the project site, there are generally adequate pedestrian facilities along primary walking routes between the site and major local destinations.

The site is expected to generate a manageable amount of pedestrian trips, and the existing pedestrian facilities can accommodate these new trips.

Bicycle

The site is proximate to several on-street bicycle facilities, including the bike lanes on New Mexico Avenue NW and Van Ness Street NW, and the on-street signed bike routes on 42nd and 43rd Streets NW. Using these facilities, bicyclists have access to several off-street bike facilities, such as the Rock Creek Trail and the Klingle Valley Trail.

Several planned and proposed bicycle projects will improve bicycle access to the site, including protected bike lanes on Massachusetts Avenue NW, Nebraska Avenue NW, and New Mexico Avenue NW.

The project will include long-term bicycle parking inside the building and short-term bicycle parking along the perimeter of the site that meets zoning requirements.

The site is expected to generate a manageable amount of bicycle trips, and the existing bicycle facilities can accommodate these new trips.

Vehicular

The site is accessible via Massachusetts Avenue NW, a principal arterial which connects the site to expressways within the District such as the Southeast Freeway (I-695), the Southwest Freeway (I-395), and the Anacostia Freeway (DC-295). These expressways connect with the Capital Beltway (I-495) and other regional Interstates.

To identify the project's impact on the transportation network, future conditions were analyzed with and without the project. Intersection analyses were performed to calculate the average delays and queues for vehicles at each of the study intersections. These average delays and queues were compared to the acceptable levels of delay and queue impacts set by DDOT standards to determine if the project will negatively impact the study area.

Further, future conditions with the proposed development were analyzed under the following two scenarios:

- <u>Existing Access:</u> University Avenue egress driveway remains open outbound site traffic during peak periods, consistent with existing conditions.
- <u>Proposed Access:</u> University Avenue egress driveway restricted during AM and PM peak periods, except for delivery vehicles that would still be permitted to use the driveway.

The analysis concluded that one (1) intersection would meet DDOT's delay-related threshold for mitigation under the Existing Access scenario and no intersections under Proposed Access scenario.

After exploring options for mitigating impacts at this intersection, this report recommends implementing a robust Transportation Demand Management (TDM) plan consistent with DDOT's Baseline Plan as a mitigation measure.

Safety Recommendations

A qualitative review of the crash data available through the DDOT-maintained and publicly-available "Crashes in DC" database was performed to identify study intersections, if any, in which conditions for vehicles, pedestrians, and bicyclists may be improved.

Based on a review of facilities in the area and relevant crash data, two (2) intersections were identified for further evaluation. Recommendations for these intersections, presented for DDOT's consideration and not for the Applicant to complete as part of the proposed project, are summarized below:

Massachusetts Avenue and Wesley Circle NW

Installation of the planned protected bike lanes along Massachusetts Avenue NW would improve conditions for bicyclists and pedestrians. Further, a safety audit should be performed as part of DDOT's Traffic Safety Assessment program.

Massachusetts Avenue and Glover Gate/Katzen Driveway NW

Installation of the planned protected bike lanes along Massachusetts Avenue NW would improve conditions for bicyclists and pedestrians. Further, a safety audit should be performed as part of DDOT's Traffic Safety Assessment program.

Transportation Demand Management (TDM) Plan

Per the DDOT CTR guidelines, the goal of implementing TDM measures is to reduce the number of single occupancy vehicles and vehicle ownership within the District. The promotion of various programs and existing infrastructure includes maximizing the use of transit, bicycle, and pedestrian facilities. DDOT has outlined expectations for TDM measures in the CTR guidelines, and this project is proposing to implement a TDM plan consistent with these guidelines based on the expected impact of the project, as discussed in the Project Design section of this report.

Summary

This report concludes that the Wesley Campus Plan will not have a detrimental impact on the surrounding transportation network assuming the proposed site design elements are implemented.

The project has several positive design elements that minimize potential transportation impacts, including but not limited to the following:

- The site's proximity to transit service and bicycle infrastructure;
- The site's location within a generally adequate pedestrian network along major walking routes;
- The site's loading facility design, which maintains loading activity within private property and provides loading circulation that ensures head-in/head-out truck movements are performed from the public roadway network:
- The inclusion of secure long-term bicycle parking spaces that meet zoning requirements;
- The inclusion of short-term bicycle parking spaces within the site that meet zoning requirements; and
- A TDM plan that reduces the demand of singleoccupancy, private vehicles during peak period travel times and shifts single-occupancy vehicular demand to off-peak periods.

Transportation Technical Attachments

Wesley Campus Plan

Washington, DC

April 29, 2022



CONTENTS

(Note: Click on heading to navigate directly to each section of the Technical Attachments)

- A. Truck Maneuvering Diagrams
- B. Detailed Trip Generation and Mode Split Information
- C. Scoping Information
- D. Vehicle Level of Service Definitions
- E. 2012 Turning Movement Counts
- F. February 2020 Turning Movement Counts
- G. 2021 Turning Movement Counts
- H. Vehicular Capacity Analysis Worksheets 2021 Existing Conditions
- I. Vehicular Capacity Analysis Worksheets 2024 Background Conditions
- J. Vehicular Capacity Analysis Worksheets 2024 Total Future Conditions with Existing Access (Alternative A)
- K. Vehicular Capacity Analysis Worksheets 2024 Total Future Conditions with Proposed Access (Alternative B)

A. Truck Maneuvering Diagrams

Landmark Housing at Wesley Theological Seminary: Loading Analysis

Bohler DC November 19, 2021

Sheet 1 of 7

NW, Washington, DC

ZONINGSCAMENISSISSISSIS

P:\2997-001 Landmark Housing at Wesley Seminary (7301-2811)\CAD\Landmark Housing at WTS AT 11.18.2021.dwg - 11/19/2021 9:55 AM District of Columbia

BEFORE THE ZONING COMMISSION OF THE DISTRICT OF COLUMBIA

FORM 116 – HEARING FEE CALCULATOR

Pursuant to Subtitle Z, Chapter 16, the following hearing fees shall be paid when the Zoning Commission schedules a public hearing on a petition or application. In the case of a petition or application combining two (2) or more actions on this form, the fee charged shall be the <u>greatest</u> of all the fees computed separately. Please show ALL computations.

A department, office, or agency of the Government of the District of Columbia is not required to pay a hearing fee where the property is owned by the agency and the property is to be occupied for a government building or use.

MAP AMENDMENT

Pursuant to Subtitle Z § 1601.1, if the Commission schedules a public hearing on a petition or application for an amendment to the Zoning Map, prior to advertisement of the hearing, the petitioner/applicant shall pay a hearing fee in accordance with the following schedule:

Petition or Application for Rezoning to any:	Unit	Fee	Quantity	Total
R-1 through R-3, R-6 through R-17, or R-19 through R-21 zone	43,560 sq. ft. or part of that area	\$ 650		
RF-1 through RF-3 zone and RA-1 or RA-6	43,560 sq. ft. or part of that area	\$1,625		
RA-2, RA-7, RA-8, or RC-1	43,560 sq. ft. or part of that area	\$3,250		
RA-3 through RA-5, RA-9, RA-10, D-1-R, SEFC-2, SEFC-3, or CG-1 zone	43,560 sq. ft. or part of that area	\$6,500		
MU-1, MU-2, MU-10 through MU-16, MU-22, MU-23, MU-29, D-2, SEFC-1, SEFC-4, CG-4 through CG-7, and ARTS-4 zone	10,000 sq. ft. or part of that area	\$2,600		
MU-3 through MU-6, MU-17 through MU-19, MU-24 through MU-27, NC-1 through NC-5, NC-7, NC-9 through NC-11, NC-14, NC-16, NC-17, D-4-R, CG-2, ARTS-1, ARTS-2, RC-2 and RC-3 zone	10,000 sq. ft. or part of that area	\$1,625		
MU-7 through MU-9, MU-20, MU-21, MU-28, NC-6, NC-8, NC-12, NC-13, NC-15, D-3 through D-5, D-5-R, D-6, D-6-R, D-7, D-8, CG-3, and ARTS-3 zone	10,000 sq. ft. or part of that area	\$3,250		
PDR-1 through PDR-7 zone	20,000 sq. ft. or part of that area	\$2,600		

TOTAL

Notes:

- The maximum hearing fee for rezoning to any Residence District (R, RF, RA, D-1-R, SEFC-2,SEFC-3 or CG-1) is \$65,000.
- For an application that proposes rezoning to more than one (1) zone district or is in the alternative, the fee shall be the total of the amounts for the area devoted to each proposed district or alternative computed separately.
- A "part of an acre" or "part of that area" should be rounded to the next whole number.

TEXT AMENDMENT

Pursuant to § Subtitle Z § 1601.3, if the Commission schedules a public hearing on a petition for an amendment to the text of the Zoning Regulations, prior to the advertisement of the hearing, the petitioner shall pay a hearing fee in accordance with the following schedule:

Petition	Fee	Quantity	Total
Each section proposed to be added, deleted, or amended (Maximum of \$1,300)	\$325.00		
TOTAL			

FORM 116 – HEARING FEE CALCULATOR – Side 2

PLANNED UNIT DEVELOPMENT (PUD) OR AIR SPACE DEVELOPMENT

Pursuant to Subtitle Z § 1601.4 if the Commission schedules a public hearing on an application for approval of a planned unit development or air space development, prior to the advertisement of the hearing, the applicant shall pay a hearing fee in accordance with the following schedule:

Application	Fee	Quantity	Total
For each 100 sq. ft. of gross floor area (GFA), or part thereof, included in the application devoted to dwelling units, and the immediate area needed to serve that dwelling unit (Maximum of \$65,000.)	\$7.00	2,993	\$20,951.00
For each 100 sq. ft. of GFA, or part thereof, included in the application devoted to any use other than a dwelling unit and the immediate area needed to serve that dwelling unit	\$13.00	53	\$689.00
TOTAL			\$21,640.00

Notes: • There is no charge for the hearing on the second-stage of a two-stage PUD application

• A "part thereof" should be rounded to the next whole number.

MODIFICATION TO AN APPROVED PUD OR AIR SPACE DEVELOPMENT

Pursuant to Subtitle Z § 1601.6, if the Commission schedules a public hearing on an application for a modification to an approved planned unit development, air space development, or any other review of a specific site or building plan, prior to the advertisement of the hearing, the applicant shall pay a hearing fee in accordance with the following schedule:

Request for Modification	Fee	Total
Modification to a previously approved case	26% of original hearing fee or \$1,300, whichever is greater	
TOTAL		

APPLICATION/ FEE OF PETITION

Pursuant to Subtitle Z § 1601.5, in the case of a petition or application combining two (2) or more actions on this form, the fee charged shall be the <u>greatest</u> of all the fees computed separately. Below, please list the total fee for each action requested and enter the fee of the <u>greatest</u> fee calculated.

Type of Petition/Application	Total
Map Amendment	
Text Amendment	
PUD/Air Space Development	
Modification to an approved PUD or Air Space Development	
GREATEST OF CALCULATED FEES	

CERTIFICATION

I/We certify that the information on this form is true and correct to the best of my/our knowledge, information and belief.

Any person(s) using a fictitious name or address and/or knowingly making any false statement on this application/petition is in violation of D.C. Law and subject to a fine of not more than \$1,000 or 180 days imprisonment or both.

(D.C. Official Code § 22-2405)

Name: John Patrick Brown, Jr. Signature: Date: 6/15/2023

If you need a reasonable accommodation for a disability under the Americans with Disabilities Act (ADA) or Fair Housing Act, please complete a Form 155 - Request for Reasonable Accommodation.

EXHIBIT "A"

EXHIBIT A

Outline of Witness Testimony

I. David McAllister-Wilson, The Wesle	y Seminary
--	------------

- **A.** Wesley Seminary: Past, Present and Future
- **B.** Thrive in Place to Further Education Mission
- **C.** Wesley's Contribution to City, Diversity and Equity
- **D.** Vital Role of Community Engagement with our Neighbors, ANCs, CLC

II. Eric Leath, Landmark Properties

- **A.** Introduction to Landmark Properties
- **B.** Purpose Built Student Housing
- C. Operation of New Dormitory
- **D.** Implementation of Inclusionary Zoning

III. Jack Boarman, BKV Group

- **A.** New Dormitory Design and Features
- **B.** Purpose Built Student Housing
- **C.** Project Revisions
- **D.** Allocation of Inclusionary Units
- E. Sustainability
- F. Landscaping

IV. Steve C. Karcha, Advanced Project Management, Inc.

- **A.** Wesley Campus
- **B.** Demolition of Buildings
- C. New Administration and Maintenance Building
- **D.** Green Open Space/Landscaping
- **E.** Playground
- **F.** Sidewalk and Public Space Improvements
- G. Construction Management with Community Participation

V. Brandice Elliott, Holland & Knight

- **A.** Standard of Review
- **B.** Racial Equity Analysis
- C. Consistency with IZ Requirements

VI. Will Zeid, Grove Slade

- **A.** Comprehensive Transportation Review
- **B.** Transportation Demand Management
- C. Performance Monitoring Plan

JACK OWEN BOARMAN, AIA, NCARB, CID

PARTNER-IN-CHARGE

Jack brings over 44 years of experience in the design of residential developments, corporate, government and academic facilities. Since founding the firm in 1978, Jack has led the firm's team design approach in the development of quality architecture across the country. He has expanded the design practice for planning, programming and design of urban redevelopment projects and historic renovations.

EDUCATION // Bachelor of Architecture with Distinction, University of Minnesota

YEARS OF EXPERIENCE // 44

REGISTRATIONS // Professional Architect: DC# 101622, MD #16180, MN #11682, IL #001017467, SD #4926, WI #6144, IA #2153, AZ #20740, NY #018772, CID# C00659, AIA Member # 30022509, NCARB #26798

PROFESSIONAL AFFILIATIONS // American Institute of Architects (AIA), Minneapolis Chapter, Minneapolis Chapter President, 1998; Minneapolis Chamber of Commerce; Minneapolis Downtown Council; Urban Land Institute; Lambda Alpha

RELEVANT EXPERIENCE

Crystal Towers, Dweck, Arlington, VA Urban Atlantic-Walter Reed Site QRS-Wash-DC

1801 E Main-Richmond, VA- 225,000 square feet, 221 units, with 5,000 square feet of retail and 110 structured parking spaces

Piazza Terminal, Philadelphia, PA

- Multifamily, Market-rate, New Construction, 937,000 SF, 13 stories, 951-unit, 513 parking spaces (5% are dedicated for green vehicles), In **Progress**

Broad and Washington, Philadelphia, PA - Market-rate, Mixed-use, Multifamily, In Progress

CastleRock, GMU Prince Williams Bldg C, Prince Williams County, VA student housing, 3 Buildings Building A 197 Units, Building B 170 Units, Building C 155 Units

Brewers Hill, Greystar, Baltimore, MD - Market-rate, Multifamily, 500-unit, In **Progress**

Dominium-Bluffs Pkwy Senior-Canton-

City Club Apartments Midtown Detroit, CCA, Detroit, MI - Market-rate, 16-, 6-story structures, 357 units, 30,000 SF retail space, 250 below-grade parking

Harwood Flats, Foulger Pratt & Promark Real Estate Services, Kensington, MD

- Project manager for the design and construction of a mixed use, 614-unit, development. 549,771 GSF, 28,000 SF

Cotton Annex, Douglas Development, Washington, DC- Adaptive reuse of the landmarked 90,000 square foot Cotton Annex, with an additional 400,000 square feet of new construction. 610 total units

Artspace Silver Spring Arts Campus, Montgomery County and Artspace, Silver Spring, MD - affordable, addition & renovation, 68 live/work artist studios, 11 townhouses

Beckert's Park, Foulger-Pratt, Washington, DC - Multifamily, Mixed Use, 5-story, 327-unit, 60,000 SF

Center City District, Landmark on Grand River / Newman Lofts, East **Lansing, MI -** Multifamily, Mixed-Use, Student Housing, New Construction, 2-Towers, 96-Active Adult Units, 289-Student Housing Unit

âme (Meridian Hill Hall), Jair Lynch, Washington, DC - Multifamily, Adaptive Reuse, Historic Renovation, 8-story, 206-unit, 187,586 SF, \$37M estimated

The Aspen, Ellisdale, Washington,

DC - Multifamily, Mixed Use, New Construction, 10-story, 133-unit, 88,310 SF housing, 5,890 SF retail, \$18.7M

(Mai Place) 1400 14th Street NW, Abdo Development, Washington,

DC - mixed use, corporate, new construction, 4-story, 30-unit, 46,394 SF housing, 13,866 SF retail, \$11.7M

New Carrollton Mixed Use Development Phase II, Urban Atlantic, New Carrollton, MD- mixed use, 5-story, 291-unit, 327,201 SF

The District (Riverfront Landings), Pittsburgh, PA - market rate, 2 buildings, 5 stories residential, 1 story amenities, 425 total units, 648,000 SF

Morrow Park City Apartments, Village Green Companies, Pittsburgh, PA market-rate, new construction, 213unit, 273,093 SF, \$37.3M

The Vintage, Valor Development, Washington, DC – Multifamily, Addition & Historic Renovation, 85-unit, 63,525 SF, \$9.8M

Advanced Project Management, Inc.

Stephen C. Karcha, VP of Project CM

CERTIFIED CM, LEED AP, GRP

Title

Vice President Project and Construction Management, 36 years' experience; 25 years with APM

Education

B.S. Civil Engineering Technology, Old Dominion University A.S. Construction Management, Northern Virginia Community College

Designations

(CCM) Certified Construction Manager (GRP) Accredited Green Roof Professional (LEED AP) LEED Professional Accreditation

Professional Affiliations

Construction Management Association of America


Green Roofs for Healthy Cities
U.S. Green Building Council
American Society of Civil Engineers
International Code Council
National Fire Protection Association
Engineer-In-Training (EIT), VA

As the VP of Project and Construction Management, Stephen is a key cornerstone of the APM team. His extensive experience in construction project management, general contracting, civil engineering, and zoning brings an expansive view to all areas of the development process.

Stephen's leadership encourages an open and creative exploration of ways to overcome the challenges encountered by the entire project team in preconstruction, construction, and preoccupancy

Recent Programs

Arlington Partnership For Affordable Housing 4 Projects \$70.89 Million Program

The Washington National Cathedral 5 Projects \$42.9 Million Program

YMCA of Metropolitan Washington 5 Projects \$41.8 Million Program

Goodwin House Incorporated 13 Projects \$192 Million Program

Episcopal High School 13 Projects \$86 Million Program

The Madeira School 8 projects \$71.1 Million Program

Wesley Theological Seminary 7 Projects \$28.5 Million Program

World Wildlife Fund, Inc. 7 Projects \$8.5 Million

Alexandria Housing Development Corporation 5 Projects \$264 Million Program

Gonzaga College High School 23 projects \$150.3 Million Program

> Flint Hill School 3 Projects \$34 Million Program

Peter Lawrence of Virginia 7 Projects \$51.2 Million Program

Vinson Hall Expansion 4 Projects \$87.9 Million Program

Sidwell Friends School 8 Projects \$113.7 Million Program

Falcons Landing 3 Projects \$45 Million Program

Virginia Theological Seminary 8 Projects 36.1 Million Program

"I appreciate a lot what APM has done to get us to this point. We would not be where we are without you" - Jonathan Frederick, President and CEO AHDC

"We were privileged to have you at the table with us; your experience, attention to detail, dedication and level head were a true benefit to the team.

- Brandon Ripley | Vice President, Construction Penzance

Holland & Knight

Brandice N. Elliott is the director of planning services in Holland & Knight's Washington, D.C., office and a member of the firm's Land Use and Government Team. Ms. Elliott works with the firm's nationally recognized development, land use and zoning attorneys to support clients as they acquire, plan and develop real estate projects.

Ms. Elliott has more than 15 years of experience providing detailed zoning, planning and design analysis to land use projects. She also has vast knowledge of land use, zoning, urban design and environmental regulatory compliance.

Prior to joining Holland & Knight, Ms. Elliott worked in the District of Columbia Office of Planning for 10 years, where she played a key role in the management of several development projects of varying size and complexity citywide. She worked with a broad coalition of development stakeholders and district agencies to negotiate planned unit developments (PUDs), map amendments, design review projects, text amendments, variances and special exceptions in order to provide recommendations aligned with district regulations, policies and priorities, and presented the analyses to the D.C. Zoning Commission and Board of Zoning Adjustment (BZA). Ms. Elliott also assisted in long-range planning efforts, including the Comprehensive Plan update and other small-area plan initiatives.

Ms. Elliott's experience also includes serving as a planner and deputy zoning administrator for the Town of Herndon, Virginia, where she oversaw the development of several projects, contributed to comprehensive plan area studies and coordinated advisory committees. Prior to that, Ms. Elliott spent several years in Mesa, Arizona, where she served as a zoning plans examiner, planner and code compliance officer.

Credentials

Education

- Arizona State University, MUEP, Master of Urban and Environmental Planning
- Arizona State University, B.A., Psychology, magna cum laude

Memberships

American Institute of Certified Planners (AICP)

BRANDICE N. ELLIOTT

PROFESSIONAL BACKGROUND

Brandice has extensive expertise in urban planning, land use, and zoning gained through over fifteen years of experience working in both public and private sectors. She is currently the Director of Planning Services at Holland & Knight LLP, Washington, DC office. Prior to that, Brandice was a Development Review Specialist with the D.C. Office of Planning (DCOP) for ten years. Her prior experience also includes serving as a Deputy Zoning Administrator, Zoning Plans Examiner, and Code Compliance Officer.

EXPERIENCE

DIRECTOR OF PLANNING SERVICES, HOLLAND & KNIGHT LLP

August 2022 - Present

- Prepares and manages developer applications for a variety of projects, including Planned Unit Developments (PUDs), zoning map amendments, zoning variances, and special exceptions.
- Assists clients with zoning entitlements and acquisition of building permits.
- Prepares testimony for zoning and land use planning to be provided to the D.C. Zoning Commission and Board of Zoning Adjustment.
- Advises clients on interpretation and application of development regulations and approval processes.
- Prepares detailed comprehensive plan, zoning, and land use analysis to advise client during property acquisition and entitlements.

DEVELOPMENT REVIEW SPECIALIST, DISTRICT OF COLUMBIA OFFICE OF PLANNING

September 2012 - August 2022

- Prepared analyses of complex project proposals to determine conformance with the Comprehensive Plan, Small Area Plans, Zoning Regulations, and other District policies.
- Provided subject matter expertise of District policies, development goals, processes, procedures, and standards as they related to the Agency.
- Regularly provided testimony to the D.C. Zoning Commission and Board of Adjustment regarding Office of Planning recommendations.
- Collaborated with Applicants and District Agencies to refine projects and reduce conflicts in the proposed design.

Projects: Managed several PUDs of varying complexity in the Florida Avenue Market Development with the goal of securing significant benefits and amenities, particularly affordable housing; Managed development proposals in Southeast Federal Center, which generally consisted of design review and text amendments that brought the Zoning Regulations in conformance with the Master Plan; and Served as subject matter expert in development of the Chevy Chase Small Area Plan.

PLANNER AND DEPUTY ZONING ADMINISTRATOR, TOWN OF HERNDON COMMUNITY DEVELOPMENT

November 2010 - September 2012

 Served as Planner and Deputy Zoning Administrator managing the Site Plan Review Process, ensuring that all requests complied with the Comprehensive Plan, Town Code, and Town policies.

- Coordinated the Pedestrian and Bicycle Advisory Committee, which provided input for the first Countywide Bicycle Transportation Plan, and presented regular updates at public information sessions and to the Town Council.
- Was the point of contact for matters concerning the Town Code and its consistency with federal Chesapeake Bay regulations.

Projects: Contributed to the first Fairfax County Bicycle Transportation Plan; Assisted with Comprehensive Plan Area Studies, including the Herndon Metrorail Study Area Plan and Downtown Herndon Area Plan.

PLANNER, TELERGY CONSULTING

September 2009 - November 2010

- Served as Planner obtaining entitlements for the development of telecommunication infrastructure.
- Coordinated public engagement, site research, city review processes, and city public hearing processes for approvals for the development of infrastructure.

CITY OF MESA, PLANNING DIVISION

PLANNER II AND CODE COMPLIANCE OFFICER (March 2010 - September 2010)

PLANNER I (December 2007 - January 2009)

ZONING PLANS EXAMINER (August 2005 - December 2007)

- Documented cases of zoning violation, provided notification to property owners, and provided assistance to correct the violation within a timely manner.
- Served as the Planner and primary contact for all requests requiring relief from the Zoning Regulations.
- Prepared analyses of project proposals to determine conformance with the Comprehensive Plan, Small Area Plans, Zoning Regulations, and other City policies.
- Provided subject matter expertise of City policies, development goals, processes, procedures, and standards as they related to the Agency.
- Regularly provided testimony to the Zoning Adjustment Hearing Officer and Board of Adjustment regarding Office of Planning recommendations.
- Collaborated with Applicants and City Agencies to refine projects and reduce conflicts in the proposal design.
- Coordinated permit reviews requiring zoning approvals and provided technical reviews of residential, commercial, and sign plans, verifying compliance with City Codes, Zoning Commission approvals, and Board of Zoning Adjustment approvals.

EDUCATION ARIZONA STATE UNIVERSITY

MUEP, Master of Urban and Environmental Planning

ARIZONA STATE UNIVERSITY

B.A., Psychology

CERTIFICATION American Institute of Certified Planners

William Zeid, PE

Senior Associate Project Manager

Will is a senior associate and project manager with over 12 years of experience in traffic, parking and transportation engineering and planning in the DC, Maryland and Virginia markets providing support for designing and entitling private and public development projects. He is responsible for managing projects in Washington, DC, Maryland, and Virginia. Will helped lead a public-private working group to update Montgomery County's 2022 Local Area Transportation Review (LATR) Guidelines to incorporate a cap on off-site improvement requirements.

Will has been qualified as an expert by the DC Board of Zoning Adjustment, the DC Zoning Commission, by numerous jurisdictions in Maryland and Virginia, and has been recognized as an expert witness by the Loudoun County Circuit Court.

He has experience with all types of projects including educational institutions, mixeduse developments, commercial and retail developments, office developments, and government facilities.

Will's project experience covers the full spectrum of land-use and includes:

Residential

7 New York Avenue NE BZA, Washington DC
CSX West - WC Smith, Washington, DC
Takoma Metro Multifamily Development, Washington, DC
Decoverly Dr at Crown Park AWSC, Gaithersburg, MD
Reed Street PUD, Washington, DC
3000 M Street NW – PUD, Washington, DC
3220 Prospect Street, Washington, DC
4618 14th Street NW PUD, Washington, DC
3427 Wisconsin Avenue NW Map Amend App
2229 M St NE PUD, Washington, DC
Broadlands Section 104 Residential, Loudoun County, VA

Mixed-Use Development

1250 U Street NW Redevelopment, Washington, DC Shady Grove Innovation District, City of Rockville, MD MRP Steuart Buzzard Point Phase 1, Washington, DC Square 669-670, Washington, DC Federal Plaza Shopping Center, Rockville, MD Smithsonian Institution – Revitalization, Washington, DC Yards Parcel Q, Washington, DC 1301 S Capitol Street, Washington, DC 5425 Wisconsin Avenue, Chevy Chase, MD Friendship Center, Washington, DC Olde Ashburn Center, Ashburn, VA 15930 Frederick Road - Lidl Derwood, Gaithersburg, MD

Education

Bachelor of Science, Civil Engineering, University of Idaho

Professional Registrations

Maryland: No. 49415 District of Columbia: No. PE921523 Indiana: No. PE12000640

Professional Associations

Maryland Society of Professional Engineers (MDSPE) National Association of Industrial and Office Properties (NAIOP) Urban Land Institute (ULI)

Experience

12 years total2 years with Gorove Slade

Location

Washington, DC

GOROVESLADE.COM 1

Federal, State, and Municipal Government

2406 Massachusetts Avenue NW, Washington, DC

Primary and Secondary Schools

Dorothy Heights Elementary School, Washington, DC Ft. Lincoln / Hagans Recreation Center, Washington, DC Raymond Elementary School, Washington, DC Aiton School, Washington, DC Washington Latin Public Charter School, Washington, DC Truesdell Education Campus, Washington, DC Kenilworth Elementary School, Washington, DC

Office

WMATA Square 487 - 600 5th Street NW, Washington, DC 14 Firstfield Road Development, Gaithersburg, MD Rockville Corporate Center, City of Rockville, MD Redland Corporate Center, City of Rockville, MD

Other

Wesley Theological Seminary, Washington, DC
4.5 Street Alley 2-Way/1-Way Conversion
405 S Frederick Road – Wawa, Gaithersburg, MD
Glymont Gas Station, Indian Head, MD
MLK Gateway Phase II, Washington, DC
Ivy City Valet Traffic Flow Chart, Washington, DC
Broadlands 204 North Parking Study, Loudoun County, VA

GOROVESLADE.COM 2

EXHIBIT "B"

TECHNICAL MEMORANDUM

To: Sayra Molina District Department of Transportation

Aaron Zimmerman From: Drew Ackermann

William Zeid, P.E. Erwin Andres, P.E.

Date: June 10, 2022

Subject: Wesley Campus Plan (ZC No. 22-13)

Transportation Demand Management (TDM) Plan and Performance Management Plan (PMP)

Introduction

This memorandum details the revised Transportation Demand Management (TDM) plan and a Performance Management Plan (PMP) for zoning case 22-13 - 4500 Massachusetts Avenue NW - Wesley Theological Seminary (WTS).

Transportation Demand Management (TDM) Plan

Transportation Demand Management (TDM) is the application of policies and strategies used to reduce travel demand or to redistribute demand to other times or spaces. TDM elements typically focus on reducing the demand of single-occupancy, private vehicles during peak period travel times or on shifting single-occupancy vehicular demand to off-peak periods.

The TDM plan for the proposed project is based on zoning regulations in addition to DDOT expectations for TDM programs for this type of use. As such, the applicant will implement the following TDM measures, at a minimum, applying to the Project and to the Wesley Campus Plan as a whole. The Applicant will explore other innovative TDM strategies and will coordinate the implementation of those strategies with goDCgo and DDOT's TDM Team.

- Unbundle the cost of vehicle parking from the lease for each residential unit and charge a minimum rate based on the
 average market rate within a quarter mile. Only monthly or by semester rates will be charged. Free parking,
 validation, or discounted rates will not be offered.
- Of the 350 parking spaces within the Project's garage, at least seven (7) will have electrical vehicle charging stations per DDOT's recommendation of one (1) charging station for every 50 parking spaces.
- Will work with American University to allow WTS students, faculty, and employees to use the AU shuttle to the Metrorail Station.
- Will fund and install an electronic screen displaying transit, shuttle, and bikeshare information in the lobby of the new building.
- Identify a Transportation Coordinator for the WTS campus. The Transportation Coordinator will act as a point of contact with DDOT, goDCgo, and Zoning Enforcement.
- Will provide Transportation Coordinator's contact information to goDCgo, conduct an annual commuter survey of employees on-site, and report TDM activities and data collection efforts to goDCgo once per year.
- Transportation Coordinator will develop, distribute, and market various transportation alternatives and options to the
 residents, including promoting transportation events (i.e., Bike to Work Day, National Walking Day, Car Free Day) on
 property website and in any internal building newsletters or communications.

- Transportation Coordinator will receive TDM training from goDCgo to learn about the transportation conditions for this project and available options for implementing the TDM Plan and PMP.
- Provide residents who wish to carpool with detailed carpooling information and will be referred to other carpool
 matching services sponsored by the Metropolitan Washington Council of Governments (MWCOG) or other
 comparable service if MWCOG does not offer this in the future.
- Will meet ZR16 long-term bicycle parking requirements by providing at least 62 long-term spaces free of charge to residents. At least 50% of long-term spaces (at least 31 spaces) will be located horizontally on the floor of the bike room. At least 10% of long-term spaces (at least 6 spaces) will be served by electrical outlets for e-bikes/scooters. At least 5% of long-term spaces (at least 3 spaces) will be designed to accommodate larger cargo/tandem bikes (10 feet by 3 feet size). Each bike storage room will include a repair station.
- Will meet ZR16 short-term bicycle parking requirements by providing 12 short-term spaces via exterior bike racks oncampus.
- Provide welcome packets to all new residents that should, at a minimum, include the Metrorail pocket guide, brochures of local bus lines (Circulator and Metrobus), carpool and vanpool information, CaBi coupon or rack card, Guaranteed Ride Home (GRH) brochure, and the most recent DC Bike Map. Brochures can be ordered from DDOT's goDCgo program by emailing info@godcgo.com.
- Transportation Coordinator will subscribe to goDCgo's residential newsletter.
- Post all TDM commitments on the WTS website and resident message board, publicize availability, and allow the
 public to see what commitments have been promised.
- Offer a free SmarTrip card to every new resident and a complimentary Capital Bikeshare coupon good for one ride.
- Prior to issuance of any certificate of occupancy for any new building, WTS will fund and construct the following pedestrian improvements:
 - A sidewalk along the east side of University Avenue NW between Massachusetts Avenue and Rodman Street,
 subject to DDOT approval, with a leadwalk into campus along at least one side of the site driveway;
 - Install signage, crosswalk and ADA curb ramps on the south leg of University Avenue at the Rodman Street intersection, subject to DDOT approval.
 - Install signage, crosswalk and ADA curb ramps on the east leg of the campus driveway at the University Avenue and Sedgwick Street intersection or construct the crossing as a continuous sidewalk, subject to DDOT approval; and
 - Install wayfinding signage on the Wesley Seminary campus directing students to the gated connection to the American University campus.

Performance Monitoring Plan (PMP)

This Performance Monitoring Plan (PMP) is Wesley Theological Seminary's plan to track progress towards its Transportation Demand Management (TDM) goals. The PMP is comprised of mode split surveys of students, internal WTS data, and manual counts of vehicle and bicycle parking inventory and occupancy which will be compiled into monitoring reports submitted to DDOT. The purpose of the monitoring reports is to make data-driven decisions about which TDM measures, if any, need to be adjusted to meet TDM goals.

Beginning the first spring semester following opening of the new dorm, monitoring will be performed, and reports will be prepared and submitted to DDOT annually until the trip goal has been met for two (2) consecutive years and then every other year for the duration of the term of the Campus Plan.

As detailed in the April 29, 2022 Comprehensive Transportation Review for the currently proposed campus plan, the proposed changes are expected to result in a net increase in vehicular trips of 14 additional morning peak hour trips and 31 additional afternoon peak hour trips. Thus, increasing the trip goal for the campus to 101 vehicle trips in either the weekday morning (AM) or weekday evening (PM) peak hours.

WTS will be considered in compliance with the PMP if the vehicle trip goal of 101 peak hour trips is met.

The monitoring reports will include details regarding the following:

- Count of the number of morning and afternoon peak hour vehicular trips arriving at and departing from the campus;
 - Morning Peak Hour: Highest 1-hour between 6:30 AM 9:30 AM
 - o Afternoon Peak Hour: Highest 1-hour between 4:00 PM 7:00 PM
 - Whether the campus is compliant with the PMP goals by generating no more than 101 peak hour vehicle trips during any of these periods.
- Survey to identify mode split, broken down by students and employees;
- Number of student, staff, and faculty parking permits issued;
- Student, staff, and faculty parking permit rates;
- Number of registered carpools;
- Number and location of any car-sharing spaces, alternative fuel vehicle parking spaces, carpool/vanpool spaces, and electric vehicle charging stations on campus;
- Inventory and occupancy of all on-site vehicular parking;
- Inventory and occupancy of long-term and short-term bicycle parking spaces; and
- Documentation of any changes to the overall transportation demand management (TDM) program from the previous year, including new or innovative policies being implemented but not explicitly required in the TDM plan agreed to during Zoning Commission approval.

This information will be collected using mode split surveys of students and employees, internal WTS data, and manual counts of vehicle and bicycle parking inventory and occupancy. Details regarding these data sources and collection techniques is provided below.

Data Collection and Mode Split Surveys

Data collection and surveys will occur on a typical weekday during the Spring semester when weather conditions are normal. A "typical" day is defined as a Tuesday, Wednesday, or Thursday when Wesley and American University classes are in session, during a week without holidays, and far enough into the school year that travel patterns are normalized.

Mode Split Surveys

WTS will conduct surveys of on-campus students and employees to determine mode splits of trips to campus, which will be included in the monitoring reports. Mode split surveys will be collected on a typical weekday when large, representative population samples can be found.

In order to have concrete, trackable year-to-year mode split data, it is recommended the phrasing of mode split survey questions include whether the respondent is a student or employee, and only ask for the travel mode the respondent used that day (not the mode they typically use according to memory). For ease of future analysis, it is recommended WTS keep the raw survey data, separated by students and employees, on file. It is recommended that the mode split survey questions be phrased as follows:

- 1. Are you a:
 - a. WTS Student
 - b. AU Student
 - c. Faculty
 - d. Full-time employee
 - e. Part-time employee
 - f. Contractor
 - a. Visitor
- 2. What transportation mode did you use for **most of** your trip to campus **today**?
 - a. Driving a car alone
 - b. Driving a car with passengers
 - c. As a passenger in a car
 - d. Carshare (Zipcar, Free2Move)
 - e. Motorcycle
 - f. AU Shuttle
 - g. Metrobus
 - h. Metrorail
 - i. Taxi
 - j. Rideshare (Uber, Lyft)
 - k. Bicycle (personal)
 - I. Scooter (personal)
 - m. Capital Bikeshare
 - Shared dockless e-scooter/bicycle (Lime, Bird, Jump, etc.)
 - o. Walk/run
 - p. Other: please specify

- 3. What transportation mode did you use for the last part of your trip to campus today?
 - a. Driving a car alone
 - b. Driving a car with passengers
 - c. As a passenger in a car
 - d. Carshare (Zipcar, Free2Move)
 - e. Motorcycle
 - f. AU Shuttle
 - g. Metrobus
 - h. Metrorail
 - i. Taxi
 - j. Rideshare (Uber, Lyft)
 - k. Bicycle (personal)
 - I. Scooter (personal)
 - m. Capital Bikeshare
 - n. Shared dockless e-scooter/bicycle (Lime, Bird, Jump, etc.)
 - o. Walk/run
 - p. Other: please specify

Internal University Data

WTS will collect the following internal data to be included in the monitoring reports:

- Number of student, staff, and faculty parking permits issued;
- Student, staff, and faculty parking permit rates;
- Number of registered carpools; and
- Number and location of any car-sharing spaces, alternative fuel vehicle parking spaces, carpool/vanpool spaces, and electric vehicle charging stations on campus; and
- Number and location of any showers and changing facilities available on campus for bicycle commuters.

Manual Parking Occupancy Counts

WTS will conduct manual counts of the following items to be included in the monitoring reports:

- Inventory and occupancy of all on-campus vehicular parking facilities;
- Inventory and occupancy of long-term and short-term bicycle parking spaces on campus; and
- These observations will be collected at the following intervals
 - o On the same day as the vehicular trip counts
 - At 7:00am, 11:00am, 3:00pm, and 7:00pm

Vehicular Trip Counts

WTS will conduct counts of vehicles arriving at and departing from the campus at all vehicular access locations during the morning and afternoon peak periods. The morning and afternoon peak hours will be used to assess compliance with the PMP.

- o Morning Peak Hour: Highest 1-hour between 6:30 AM 9:30 AM
- o Afternoon Peak Hour: Highest 1-hour between 4:00 PM 7:00 PM
- Whether the campus is compliant with the PMP goals by generating no more than 101 peak hour vehicle trips during any of these periods.

Comprehensive Transportation Review

Wesley Campus Plan

Washington, DC

April 29, 2022

Prepared by:

1140 Connecticut Ave NW 225 Reinekers Lane 4144 Legato Road 4951 Lake Brook Drive **Suite 1010** Suite 750 Suite 250 Suite 650 Washington, DC 20036 Alexandria, VA 22314 Fairfax, VA 22033 Glen Allen, VA 23060 T 202.296.8625 T 703.721.3044 T 703.787.9595 T 804.362.0578

www.goroveslade.com

This document, together with the concepts and designs presented herein, as an instrument of services, is intended for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization by Gorove/Slade Associates, Inc., shall be without liability to Gorove/Slade Associates, Inc.

CONTENTS

E	cecutive Summary	1
ln	troduction	4
	Purpose of Study	4
	Project Summary	4
	Study Contents	5
St	udy Area Overview	8
	Major Transportation Features	8
	Future Projects	10
Pı	oject Design	14
	Site Access and Circulation	14
	Loading and Trash	14
	Parking	15
	Bicycle Facilities	15
	Pedestrian Facilities	15
	Transportation Demand Management	15
Tı	avel Demand Assumptions	18
	Proposed Site Trip Generation	18
Tı	affic Operations	19
	Study Area, Scope, & Methodology	19
	Vehicular Analysis Results	24
	Mitigation Measures	25
Tı	ansit Facilities	46
	Existing Transit Service	46
	Proposed Transit Service	46
	Site-Generated Transit Impacts.	46
Р	edestrian Facilities	50
	Pedestrian Study Area	50
	Existing Pedestrian Infrastructure	50
	Proposed Pedestrian Infrastructure	51
	Site-Generated Pedestrian Impacts	51
Bi	cycle Facilities	54
	Existing Bicycle Facilities	54
	Planned Bicycle Facilities	54
	Proposed Bicycle Facilities	54
	Site-Generated Bicycle Impacts	55

Wesley Campus Plan – Comprehensive	Transportation	Review	(CTR)
April 29, 2022			

Safety Analysis	58
Summary of Safety Analysis	58
Potential Impacts	58
Summary and Conclusions	62

LIST OF FIGURES

Figure 1: Site Location	6
Figure 2: Site Aerial	7
Figure 3: Walk Score and Bike Score	10
Figure 4: Major Regional Transportation Facilities	12
Figure 5: Major Local Transportation Facilities	13
Figure 6: Proposed Site Access and Circulation Plan	17
Figure 7: Study Area Intersections	27
Figure 8: Existing, Background, and Total Future Lane Configurations and Traffic Controls	28
Figure 9: Peak Hour Volumes Comprised of Turning Movement Counts from Various Sources	29
Figure 10: Background Growth Applied to 2012 & 2020 Peak Hour Volumes to Establish Existing 2021 Peak Hour Volumes	30
Figure 11: 2021 Existing Peak Hour Volumes	31
Figure 12: Background Growth Peak Hour Volumes	32
Figure 13: 2024 Background Peak Hour Volumes	33
Figure 14: Inbound Trip Distribution (Total Future with Existing Access and Total Future with Proposed Access)	34
Figure 15: Outbound Trip Distribution (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)	35
Figure 16: Outbound Trip Distribution (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)	
Figure 17: Trip Distribution at Study Intersections (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)	37
Figure 18: Trip Distribution at Study Intersections (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)	
Figure 19: Site-generated Peak Hour Volumes (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)	39
Figure 20: Site-generated Peak Hour Volumes (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted Dur Peak Periods – Delivery Vehicle Access Maintained)	•
Figure 21: 2024 Total Future Peak Hour Volumes (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)	
Figure 22: 2024 Total Future Peak Hour Volumes (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)	42
Figure 23: Existing Transit Facilities	49
Figure 24: Existing Pedestrian Pathways	52
Figure 25: Existing Pedestrian Facilities	53
Figure 26: Existing Bicycle Facilities	56
Figure 27: Existing, Planned, and Proposed Bicycle Facilities	57
Figure 28: Total Crashes (2016 to present)	59
Figure 29: Pedestrian-involved Crashes (2018 to present)	60
Figure 30: Bicycle-involved Crashes (2018 to present)	61

LIST OF TABLES

Table 1: Mode Split Assumptions	18
Table 2: Multimodal Trip Generation	18
Table 3: Applied Annual and Total Growth Rates	23
Table 4: LOS Comparison	43
Table 5: v/c Comparison	44
Table 6: 50 th & 95 th Percentile Queuing Comparison (in feet)	45
Table 7: Local Bus Route Information	47
Table 8: WMATA Recommended Bus Stop Amenities	47
Table 9: Bus Stop Inventory	48
Table 10: DDOT Sidewalk Width Requirements	50

Executive Summary

This report presents a Comprehensive Transportation Review (CTR) for the Wesley Campus Plan at the Wesley Theological Seminary (WTS) campus.

The purpose of this CTR is to evaluate whether the project will generate a detrimental impact to the transportation network surrounding the site. This evaluation is based on a technical comparison of the Existing Conditions, Background Conditions, and Total Future Conditions. This report concludes that **the project will not have a detrimental impact** to the surrounding transportation network assuming the proposed site design elements are implemented.

Proposed Project

The development site location is within the WTS campus, which is generally bounded by University Avenue NW to the west, Massachusetts Avenue NW to the north, and the American University (AU) campus to the east and south. The portion of the site to be redeveloped includes the Old President's House, a surface parking lot and two (2) student housing and administration buildings.

The proposed project includes replacement of the Old President's House and removing the surface parking lot and existing buildings to construct a new student housing building containing approximately 215 dwelling units, 1,535 square feet of retail spaces, and 350 below-grade parking spaces.

The proposed student housing building will be for WTS and AU students and may also house immediate families, faculty and staff and building employees. The housing building will not otherwise serve the general public.

Multimodal Overview

Trip Generation

The Wesley Campus Plan is expected to generate new trips within the surrounding transportation network across all transportation modes during the morning and afternoon peak hours. However, with the implementation of a Transportation Demand Management (TDM) plan as part of the project, the resulting new trips generated by the project will not have a detrimental impact on the transportation network. The multimodal trip generation for the proposed project is as follows:

 AM Peak Hour: 14 vehicles/hour, 39 transit riders/hour, four (4) bicycle trips/hour, and 19 walking trips/hour. PM Peak Hour: 33 vehicles/hour, 90 transit riders/hour, 10 bicycle trips/hour, and 45 walking trips/hour.

Transit

The site is located 1.1 miles from the Tenleytown-AU Metro station on the Red Line and is served by local bus routes.

The site is expected to generate a manageable amount of transit trips, and the existing service can accommodate these new trips.

Pedestrian

The site is surrounded by a generally adequate pedestrian network. Despite some incidences of missing sidewalks, curb ramps, and crosswalks on minor streets near the project site, there are generally adequate pedestrian facilities along primary walking routes between the site and major local destinations.

The site is expected to generate a manageable amount of pedestrian trips, and the existing pedestrian facilities can accommodate these new trips.

Bicycle

The site is proximate to several on-street bicycle facilities, including the bike lanes on New Mexico Avenue NW and Van Ness Street NW, and the on-street signed bike routes on 42nd and 43rd Streets NW. Using these facilities, bicyclists have access to several off-street bike facilities, such as the Rock Creek Trail and the Klingle Valley Trail.

Several planned and proposed bicycle projects will improve bicycle access to the site, including protected bike lanes on Massachusetts Avenue NW, Nebraska Avenue NW, and New Mexico Avenue NW.

The project will include long-term bicycle parking inside the building and short-term bicycle parking along the perimeter of the site that meets zoning requirements.

The site is expected to generate a manageable amount of bicycle trips, and the existing bicycle facilities can accommodate these new trips.

Vehicular

The site is accessible via Massachusetts Avenue NW, a principal arterial which connects the site to expressways within the District such as the Southeast Freeway (I-695), the Southwest Freeway (I-395), and the Anacostia Freeway (DC-295). These

expressways connect with the Capital Beltway (I-495) and other regional Interstates.

To identify the project's impact on the transportation network, future conditions were analyzed with and without the project. Intersection analyses were performed to calculate the average delays and queues for vehicles at each of the study intersections. These average delays and queues were compared to the acceptable levels of delay and queue impacts set by DDOT standards to determine if the project will negatively impact the study area.

Further, future conditions with the proposed development were analyzed under the following two scenarios:

- <u>Existing Access:</u> University Avenue egress driveway remains open to site egress traffic during peak periods, consistent with existing conditions. The driveway already does not allow inbound site traffic, other than delivery vehicles.
- <u>Proposed Access:</u> University Avenue egress driveway closed to egress site traffic during AM and PM peak periods, except for delivery vehicles that would still be permitted to use the driveway.

The analysis concluded that one (1) intersection would meet DDOT's delay-related threshold for mitigation under the Existing Access scenario and no intersections under the Proposed Access scenario.

After exploring options for mitigating impacts at this intersection, this report recommends implementing a robust Transportation Demand Management (TDM) plan consistent with DDOT's Baseline Plan as a mitigation measure.

Safety Recommendations

A qualitative review of the crash data available through the DDOT-maintained and publicly-available "Crashes in DC" database was performed to identify study intersections, if any, in which conditions for vehicles, pedestrians, and bicyclists may be improved.

Based on a review of facilities in the area and relevant crash data, two (2) intersections were identified for further evaluation. Recommendations for these intersections, presented for DDOT's consideration and not for the Applicant to complete as part of the proposed project, are summarized below:

Massachusetts Avenue and Wesley Circle NW

Installation of the planned protected bike lanes along Massachusetts Avenue NW would improve conditions for bicyclists and pedestrians. Further, a safety audit should be performed as part of DDOT's Traffic Safety Assessment program.

Massachusetts Avenue and Glover Gate/Katzen Driveway NW

Installation of the planned protected bike lanes along Massachusetts Avenue NW would improve conditions for bicyclists and pedestrians. Further, a safety audit should be performed as part of DDOT's Traffic Safety Assessment program.

Transportation Demand Management (TDM) Plan

Per the DDOT CTR guidelines, the goal of implementing TDM measures is to reduce the number of single occupancy vehicles and vehicle ownership within the District. The promotion of various programs and existing infrastructure includes maximizing the use of transit, bicycle, and pedestrian facilities. DDOT has outlined expectations for TDM measures in the CTR guidelines, and this project is proposing to implement a TDM plan consistent with these guidelines based on the expected impact of the project, as discussed in the Project Design section of this report.

Summary

This report concludes that the Wesley Campus Plan will not have a detrimental impact on the surrounding transportation network assuming the proposed site design elements are implemented.

The project has several positive design elements that minimize potential transportation impacts, including but not limited to the following:

- The site's proximity to transit service and bicycle infrastructure:
- The site's location within a generally adequate pedestrian network along major walking routes;
- The site's loading facility design, which maintains loading activity within private property and provides loading circulation that ensures head-in/head-out truck movements are performed from the public roadway network;
- The inclusion of secure long-term bicycle parking spaces that meet zoning requirements;

- The inclusion of short-term bicycle parking spaces within the site that meet zoning requirements; and
- A TDM plan that reduces the demand of singleoccupancy, private vehicles during peak period travel times and shifts single-occupancy vehicular demand to off-peak periods.

Introduction

This report is a Comprehensive Transportation Review (CTR) reviewing the transportation aspects of the Wesley Campus Plan. The site, shown in Figure 1 and Figure 2, is located at Square 1600 and Lot 0819 within the Wesley Theological Seminary (WTS) campus in the Spring Valley neighborhood of Washington, DC. The site is currently zoned RA-1.

The project site is currently improved with a surface parking lot and two (2) student housing and administration buildings. The proposed project includes removing the surface parking lot and existing buildings, replacing them with a new building containing student housing and retail space with below grade parking.

The proposed project also includes closing the existing University Avenue egress driveway to traffic during the AM and PM peak periods, except for delivery vehicles that would still be permitted to use the driveway. This is identified as the Proposed Access condition, and is presented in further detail within the report.

The proposed student housing building will be for WTS and AU students and may also house immediate families, faculty and staff and building employees. The housing building will not otherwise serve the general public.

Purpose of Study

The purpose of this report is to:

- Review the transportation elements of the proposed project and demonstrate that it conforms to DDOT's general policies of promoting non-automobile modes of travel:
- Provide information to DDOT and other agencies on how the proposed project will impact the local transportation network, accomplishing this by identifying the potential trips generated by the proposed project on all major modes of travel and where these trips will be distributed on the network;
- Determine whether the proposed project will lead to adverse impacts on the local transportation network;
- Propose design elements and Transportation Demand Management (TDM) measures as necessary to mitigate any potential adverse impacts to the transportation network.

Project Summary

The site location is within the WTS campus, which is generally bounded by University Avenue NW to the west, Massachusetts Avenue NW to the north, and the American University (AU) campus to the east and south. The portion of the site to be redeveloped is currently occupied by a surface parking lot and two (2) student housing and administration buildings.

The proposed project includes removing the surface parking lot and existing buildings, replacing them with a new student housing building containing approximately 215 dwelling units, 1,535 square feet of retail space, and 350 below-grade parking spaces.

Pedestrian access to the project is proposed to be located at several entrances on the northern edge of the development along the WTS driveway.

Bicycle access will be provided from the WTS driveways on Massachusetts Avenue and University Avenue. The site is located approximately 0.5 miles northwest of the bike lanes on New Mexico Avenue NW and 0.5 miles southwest of the onstreet signed routes on 42nd and 43rd Streets NW. The project will meet zoning requirements by providing at least 62 long-term bicycle parking spaces inside the building and at least 12 short-term bicycle parking spaces on exterior racks. The nearest Capital Bikeshare station is located 0.2 miles east of the site at Ward Circle.

Vehicular access to the proposed garage will be provided via the internal site circulation with public road access on the northern edge of the site at Massachusetts Avenue.

Loading and deliveries will occur within an internal loading area accessed from the internal site circulation drive via with public road access on the northern edge of the site at Massachusetts Avenue. The proposed loading facilities will accommodate the project's loading needs, maintain loading activity within private property, and provide loading circulation that ensures head-in/head-out truck movements are performed to and from the public roadway network.

No new curb cuts within public space are proposed as part of the project. All vehicular access will remain from existing access locations at the two-way WTS driveway entrance/exit at Massachusetts Avenue NW and the one-way WTS driveway exit at University Avenue NW. The WTS driveway exit at University

Avenue NW is one-way outbound for all vehicles except WTS food service trucks, for which two-way traffic is permitted. Under the Existing Access scenario, this arrangement will not change, and under the Proposed Access scenario, the WTS driveway exit at University Avenue NW would be closed during the AM and PM peak periods, except for delivery vehicles that would still be permitted to use the driveway.

Study Contents

This report contains nine (9) chapters as follows:

• Study Area Overview

This chapter reviews the transportation characteristics of the area surrounding the proposed project.

Project Design

This chapter reviews the transportation components of the proposed project, including site access and circulation, loading and trash operations, parking, and bicycle and pedestrian facilities.

• Travel Demand Assumptions

This chapter outlines the travel demand and projected trip generation of the proposed project.

Traffic Operations

This chapter provides a summary of the existing roadway facilities and an analysis of the existing and future roadway capacity in the study area. This section highlights the vehicular impacts of the project and presents mitigation measures for minimizing impacts as needed.

Transit Facilities

This chapter summarizes the existing and future transit service adjacent to the site and reviews how the project's transit demand will be accommodated.

Pedestrian Facilities

This chapter summarizes existing pedestrian access to the site, reviews walking routes to and from the proposed project, and reviews how the project's pedestrian demand will be accommodated.

Bicycle Facilities

This chapter summarizes existing and future bicycle access to the site and reviews how the project's bicycle demand will be accommodated.

Safety Analysis

This chapter summarizes the potential safety impacts of the project. This includes a qualitative review of existing and proposed safety features surrounding the site.

Summary and Conclusions

This chapter presents overall findings and conclusions.

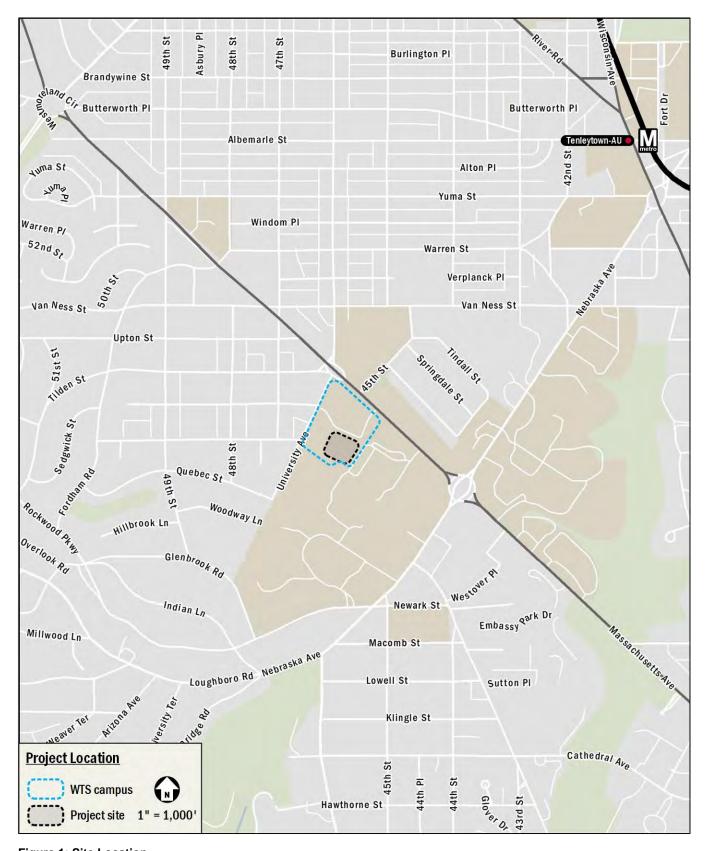


Figure 1: Site Location

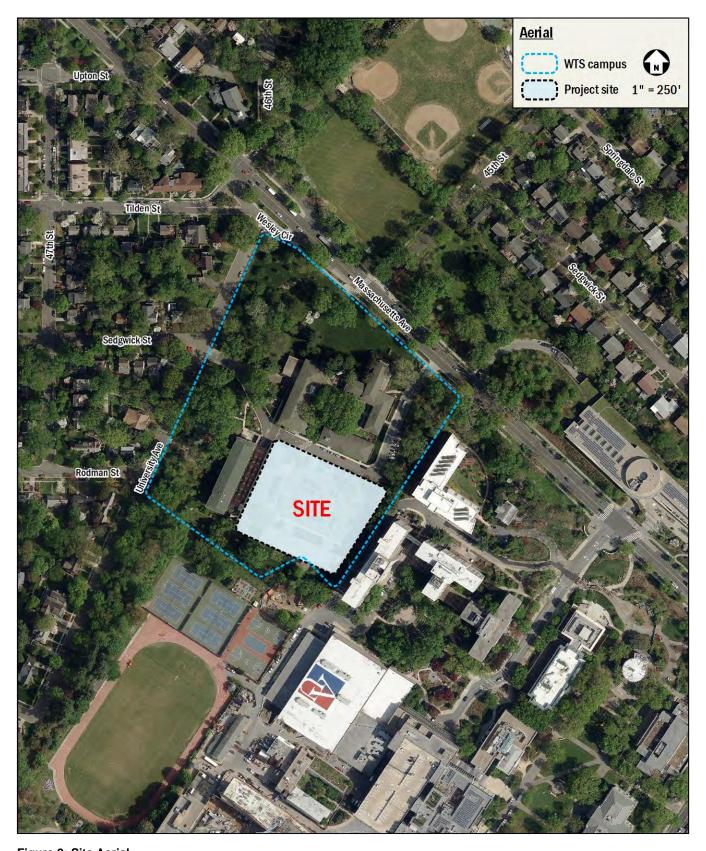


Figure 2: Site Aerial

Study Area Overview

This chapter reviews the major transportation characteristics of the study area and future local and regional projects.

This chapter concludes:

- The site is surrounded by an extensive regional and local transportation system connecting it to the rest of the District and surrounding areas;
- The site is served by bus and rail transit providing service to local and regional destinations;
- The site is accessible to several shared mobility options, including car-sharing, Capital Bikeshare, and personal mobility devices;
- There are several on-street bicycle facilities near the site, with several nearby bicycle improvements planned or proposed;
- The existing pedestrian infrastructure surrounding the site provides a mostly adequate walking environment, particularly along anticipated major walking routes; and
- There are several nearby District-wide and local planning initiatives whose goals are supported by the proposed project.

Major Transportation Features

Overview of Regional Access

As shown in Figure 4, the site has ample access to regional vehicular and transit options that connect the site to destinations within the District, Maryland, and Virginia.

The site is accessible via Massachusetts Avenue NW, a principal arterial which connects the site to expressways within the District such as the Southeast Freeway (I-695), the Southwest Freeway (I-395), and the Anacostia Freeway (DC-295). These expressways connect with the Capital Beltway (I-495) and other regional Interstates.

The site is located 1.1 miles from the Tenleytown-AU Metro station on the Red Line, which travels between the Glenmont and Shady Grove stations by way of downtown Washington, DC.

Overall, the site has ample access to regional roadways and transit options, allowing convenient travel between the site and regional destinations.

Overview of Local Access

There are a variety of major local transportation facilities near the site that serve vehicular, transit, walking, and cycling trips, as shown on Figure 5.

For vehicular trips, the site is accessible via Massachusetts Avenue NW, a principal arterial which connects the site to expressways within the District such as the Southeast Freeway (I-695), the Southwest Freeway (I-395), and the Anacostia Freeway (DC-295). These expressways connect with the Capital Beltway (I-495) and other regional Interstates.

For transit trips, Metrobus and AU Shuttle services provide service in the vicinity of the site, including connections to several neighborhoods within the District and the Tenleytown-AU Metro station. As shown in Figure 5, there are several bus routes serving the site, with multiple bus stops serving these routes located within a half-mile of the site. These bus routes connect the site to many areas of Washington, DC, including several Metro stations where transfers can be made to reach areas in the District, Virginia, and Maryland. A detailed review of all bus routes and transit stops within a half-mile walk of the site is provided in a later chapter of this report.

For bicycle trips, the site is located approximately 0.5 miles northwest of the bike lanes on New Mexico Avenue NW and 0.5 miles southwest of the on-street signed routes on 42nd and 43rd Streets NW. Using these facilities, bicyclists have access to several other regional bicycle facilities. To accommodate bicyclists, the project will provide on-site bicycle facilities as discussed in detail in the Project Design chapter. A detailed review of existing and proposed bicycle facilities and connectivity is provided in the Bicycle Facilities chapter of this report.

Anticipated pedestrian routes such as those to transit stops, schools, and community amenities, provide adequate pedestrian facilities; however, there are a few sidewalks nearby that do not meet DDOT width standards, as well as several missing curb ramps and crosswalks at minor intersections. The site area is free of major barriers to pedestrian connectivity. A detailed review of existing and future pedestrian access and infrastructure is provided in the Pedestrian Facilities chapter of this report.

Carsharing

Two (2) carsharing companies provide service in the District: Zipcar and Free2Move. Both services are private companies that provide registered users access to a variety of automobiles. Of these, Zipcar has designated spaces for their vehicles. The nearest Zipcar location to the site is located near the intersection of Massachusetts Avenue and Embassy Park Drive NW, approximately 0.7 miles southeast of the site.

Carsharing is also provided by Free2Move, which provides point-to-point carsharing. Free2Move currently has a fleet located within areas of the District and Arlington County. Free2Move vehicles may park in any non-restricted metered curbside parking space or Residential Parking Permit (RPP) location in any zone throughout the defined "Home Area". Members do not have to pay the meters or pay stations. Free2Move does not have permanent designated spaces for their vehicles; however, availability is tracked through their website and mobile phone application, which provides an additional option for car-sharing patrons.

Bikeshare and Shared Mobility

The Capital Bikeshare program provides an additional bicycle option for residents, staff, and visitors of the proposed project. The program has placed over 500 bikeshare stations across the Washington, DC metropolitan area with over 4,500 bicycles in the fleet.

In addition to Capital Bikeshare, eight (8) electric-assist scooter (e-scooter) and electric-assist bicycle (e-bike) companies provide Personal Mobility Device (PMD) service in the District: Bird, Lime, Lyft, Razor, Skip, Spin, Helbiz, and JUMP. These PMDs are provided by private companies that give registered users access to a variety of e-scooter and e-bike options. These devices are used through each company-specific mobile phone application. Many PMDs do not have designated stations where pick-up/drop-off activities occur like with Capital Bikeshare; instead, many PMDs are parked in public space, most commonly in the "furniture zone" (the portion of sidewalk between where people walk and the curb, often where other street signs, street furniture, trees, parking meters, etc. are found). Currently, PMD pilot/demonstration programs are underway in Arlington County, the District, Fairfax County, the City of Alexandria, and Montgomery County.

Walk Score and Bike Score

Walkscore.com is a website that provides scores and rankings for walking, biking, and transit conditions within neighborhoods of the District. Based on this website, the site has a walk score of 57 (or "Somewhat Walkable"), a transit score of 42 (or "Some Transit"), and a bike score of 47 (or "Somewhat Bikeable"). Figure 3 shows the site's location within a heat map for walkability and bikeability. The following conclusions can be made based on the data obtained from Walkscore.com:

- The site is situated in a somewhat walkable location where some errands can be accomplished on foot;
- The site is situated in an area with a moderate amount of transit: and
- The site is situated in a somewhat bikeable area with minimal bike infrastructure.

The Wesley Campus Plan will directly improve the neighborhood's pedestrian and bike accessibility by ensuring sidewalks on the project site meet DDOT standards and by providing new short- and long-term bicycle parking facilities.

Figure 3: Walk Score and Bike Score

Future Projects

There are several District initiatives located in the vicinity of the site. These planned and proposed projects are summarized below.

Planning Documents

The following is a review of District-wide or neighborhood-level planning documents which relate to the proposed project.

MoveDC

MoveDC is the District's long-range transportation plan, which provides a framework of goals and policies that will guide transportation decisions in the District over a 25-year period. The MoveDC plan is oriented around the goals of safety, mobility, management and operations, enjoyable spaces, equity, project delivery, and sustainability.

Included in *MoveDC* are Mobility Priority Network maps for bicycles, surface transit, and freight. These maps do not identify specific projects or improvements, but are intended to guide future decisions about which projects will be selected and developed. In direct relation to the proposed Project, the Mobility Priority Network maps identify the following:

 Bicycle improvements along Massachusetts Avenue NW, Nebraska Avenue NW, Arizona Avenue NW, Loughboro Road NW, 49th Street NW, Albermarle Street NW, Glenbrook Road NW, and Rockwood Parkway NW.

Vision Zero Action Plan

DDOT's Vision Zero Action Plan is the implementation strategy of DC's Vision Zero Initiative, which commits to reaching zero fatalities and serious injuries to travelers of DC's transportation system by the year 2024. The Action Plan is based on DC interagency workgroups, public input, local transportation data and crash statistics, and national and international best practices. Workgroups identified the guiding themes for the Vision Zero Action Plan and the goals of the DC government. The Action Plan focuses on the following themes:

- Create Safe Streets
- Protect Vulnerable Users
- · Prevent Dangerous Driving
- Be Transparent and Responsive

Strategies within each theme assign lead and supporting agencies responsible for the planning and implementation of each program. The plan also calls for partners external to District government to ensure accountability and aid in implementation.

While the *Vision Zero Action Plan* does not propose any location-specific actions that relate to the proposed project, the proposed project supports DC's overall Vision Zero goals by not creating any new curb cuts from public space, by providing new short-and long-term bicycle parking facilities, and by ensuring sidewalks along the site's perimeter meet DDOT standards and provide a safe, attractive pedestrian experience.

Sustainable DC 2.0 Plan

Sustainable DC is the District of Columbia's major planning effort to make DC the most sustainable city in the nation. It proposes a variety of sustainability goals, targets, and actions related to the built environment, transportation, and other topics.

The 2019 iteration of the plan, the *Sustainable DC 2.0 Plan*, includes the following proposed action which is supported by the proposed project.

- Expand safe, connected infrastructure for pedestrians and cyclists.
- Reduce greenhouse gas emissions and air pollution from the transportation sector.

The Wesley Campus Plan will support these actions by not creating any new curb cuts from public space, by providing new short- and long-term bicycle parking facilities, and by ensuring sidewalks along the site's perimeter meet DDOT standards and provide a safe, attractive pedestrian experience.

Capital Bikeshare Development Plan

DDOT's *Capital Bikeshare Development Plan* was originally released in 2016 to guide the continued growth of Capital Bikeshare in the District of Columbia. The most recent update of the *Development Plan* was released in 2020 and includes the following:

- A planned station at Turtle Park, 0.2 miles from the site:
- A proposed station at Quebec Street and 48th Street NW, 0.4 miles from the site; and
- A proposed station at 47th Street and Warren Street NW, 0.5 miles from the site.

Rock Creek Far West Livability Study

This is an ongoing DDOT study to evaluate the transportation network within the study area, bound by Massachusetts Avenue, Whitehaven Street, Whitehaven Parkway, Archbold Parkway, Foundry Branch Valley Park, the Potomac River, and the DC/Maryland border, to identify opportunities for a safer and more accessible multimodal network.

The study's primary objectives are to:

- Develop a comprehensive approach to traffic calming and operational improvements for all users living in and visiting the area;
- Identify specific issues that impact safety and comfort of pedestrians, bicyclists, transit users, and motorists, while also accommodating freight and delivery needs;
- Design cost-effective and measurable system improvements that benefit all users;

- Emphasize safety and access improvements around neighborhood facilities including but not limited to schools, parks, recreation centers, transit stops, and other key community facilities; and
- Enhance comfort and livability for residents and visitors to the project area.

Wesley Campus Plan (2012)

This is the currently adopted Campus Plan for Wesley Theological Seminary. It was submitted in 2012 as an amendment to the 2006 Campus Plan, and its approval was valid through June 30, 2021.

The 2012 Campus Plan amended and extended the original 2006 Campus Plan, maintaining levels of student, faculty, and staff but substantially reducing the previously approved new construction. Under the 2012 Campus Plan, existing campus facilities were maintained without demolition and several previously approved new buildings were eliminated from plans. The only addition to the campus was a new three-story, 76-bed residence hall. Additionally, the two existing residential buildings were renovated, surface parking was increased, and other campus enhancements were made.

The Seminary is currently assembling a new Campus Plan amendment consisting of a new administrative building replacing the Old President's House, as well as a new student housing building, which is the subject of this CTR.

American University Campus Plan (2021)

This is American University's recently adopted 10-year Campus Plan, encompassing the main AU campus, the Tenley Campus, and several smaller AU facilities. The Campus Plan outlines anticipated site development, vehicle parking, and Transportation Demand Management (TDM) strategies for the campus. It proposes some development on campus, an increase in the student cap from 13,600 to 14,380 students, an increase in the employee population cap from 2,900 to 3,350, and an increase of the on-site vehicle parking inventory from 2,701 to 3,000 spaces.

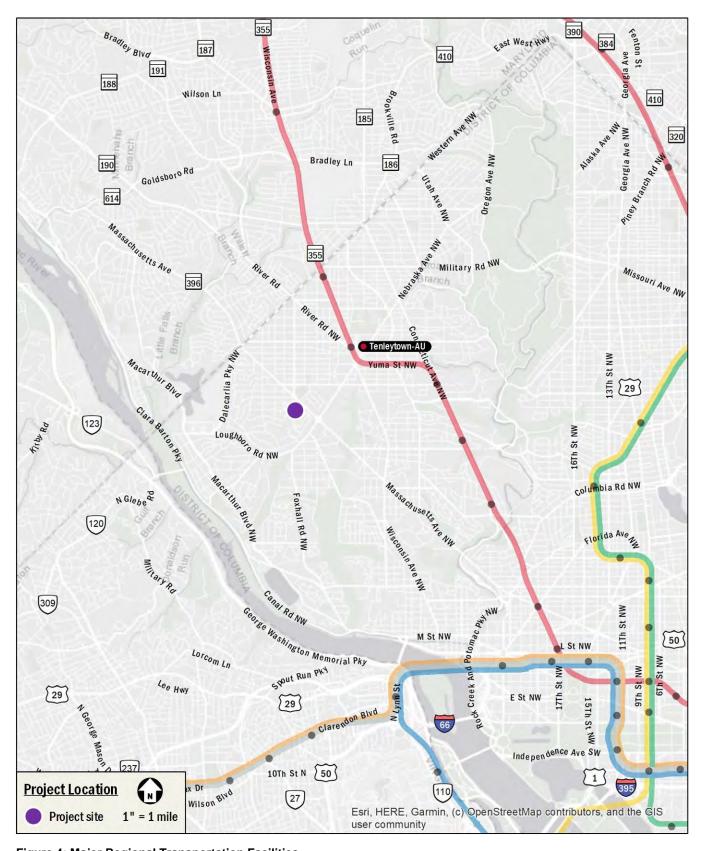


Figure 4: Major Regional Transportation Facilities

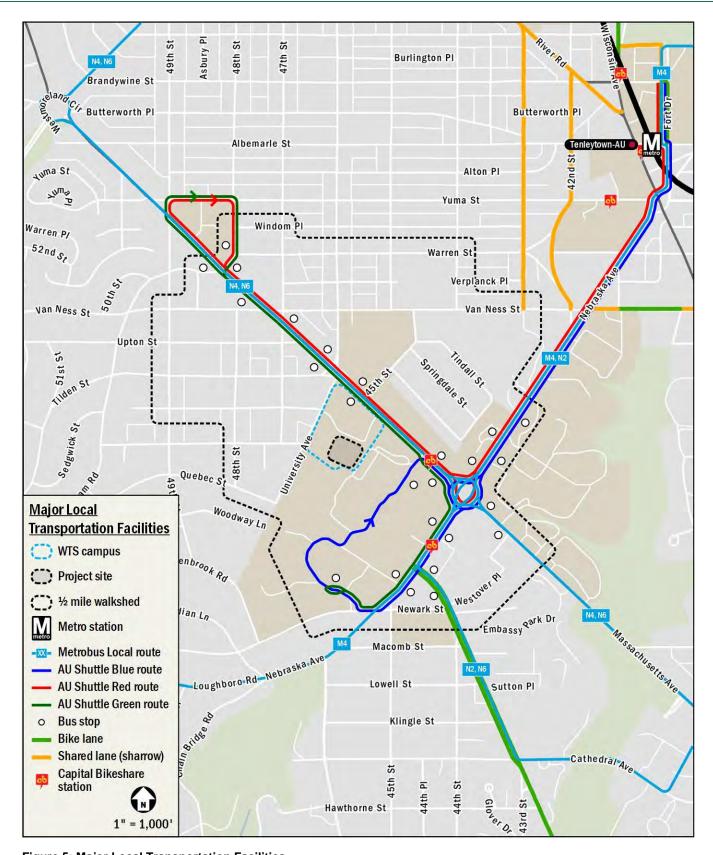


Figure 5: Major Local Transportation Facilities

Project Design

This section reviews the transportation components of the Wesley Campus Plan, including the proposed site plan and access points. It includes descriptions of the site's vehicular access, pick-up/drop-off operations, parking, and pedestrian and bicycle accommodations.

The development site located within the WTS campus, which is generally bounded by University Avenue NW to the west, Massachusetts Avenue NW to the north, and the American University (AU) campus to the east and south. The portion of the site to be redeveloped is currently occupied by a surface parking lot and two (2) student housing and administration buildings. The proposed project includes removing the surface parking lot and existing buildings, replacing them with a new student housing building containing approximately 215 dwelling units, 1,535 square feet of retail space, and 350 below-grade parking spaces.

A detailed site plan is shown on Figure 6.

Site Access and Circulation

Pedestrian Access

Pedestrian access is proposed to be provided via separate residential and retail entrances accessed from the internal driveway within WTS.

Pedestrian access to the site is shown on Figure 6.

Bicycle Access

Bicycle access is proposed to be provided via the garage ramp from the WTS driveway that will lead to a bike storage room in Level 1 of the garage. The project will meet zoning requirements by providing at least 62 long-term bicycle parking spaces inside the building and at least 12 short-term bicycle parking spaces on exterior racks within the site. The exact location of the short-term bicycle parking spaces is still to be determined.

The locations of these facilities are shown on Figure 6.

Vehicular Access

Vehicular access to the proposed garage entrance will be provided via a connection to the internal driveway within the WTS campus with public road access at University Avenue and/or Massachusetts Avenue. No new curb cuts from public space are proposed as part of this project.

Regarding vehicular access locations from public streets, there are two (2) scenarios presented in this report. In the Existing

Access scenario, inbound and outbound traffic will be provided from the two-way WTS driveway entrance/exit at Massachusetts Avenue NW, and the one-way WTS driveway exit at University Avenue NW will be remain open to outbound traffic only. This is consistent with existing vehicular circulation patterns on the WTS campus.

In the Proposed Access scenario, the Massachusetts Avenue NW driveway connection will remain unchanged. However, the one-way WTS driveway exit at University Avenue NW will be closed to traffic during the AM (6:30-7:30 AM) and PM (4:00-7:00 PM) peak periods, except for delivery vehicles that would still be permitted to use the driveway.

These two scenarios are presented for reference and comparison, but the Applicant is planning to implement the Proposed Access scenario.

Figure 6 shows the location of the vehicular access points for the parking garage, pick-up/drop-off area, and loading facilities.

Pick-up/Drop-off Operations

An internal curbside pick-up/drop-off area is proposed along the WTS campus driveway adjacent to the proposed new building. The pick-up/drop-off area is shown on Figure 6.

Loading and Trash

Loading

The proposed loading facilities will accommodate all loading activity and delivery demand for the proposed project without any detrimental impact to the surrounding transportation network. DDOT standards stipulate that truck movements be accommodated without back-in movements through public space. The Wesley Campus Plan has been designed to accommodate all loading activity and associated backing maneuvers within the site. Truck turning diagrams using AutoTURN are provided in the Technical Attachments.

Loading and deliveries will occur in an internal loading area accessed from the existing WTS campus driveway. The proposed loading facilities will accommodate the project's loading needs, maintain loading activity within private property, and provide loading circulation that ensures head-in/head-out truck movements are performed from the public roadway network.

The loading area will include one (1) 30' x 12' loading berth and one (1) 20' x 10' service/delivery space, satisfying ZR16 regulations.

Truck routing to and from the site will be focused on Massachusetts Avenue NW, a designated primary truck route.

Loading access and circulation is shown on Figure 6.

Trash

Trash for the project will be accommodated using trash receptacles within the loading areas. No trash will be stored in public space.

Parking

The WTS site is currently served by 174 surface parking spaces. The proposed developed will displace 143 of the existing surface parking spaces and will include 350 parking spaces within a garage. As a result, the total parking on site will be 381 parking spaces (31 surface + 350 garage).

The net change in parking as a result of the project is therefore 207 net additional spaces.

Because the primary land use is student housing, there is no suitable parking standard from either ZR16 or DDOT's Preferred Parking Rates to compare the proposed supply to. Per Subtitle C § 701.5, college/university land uses should provide parking as set forth in the approved Campus Plan. The 2006 Zoning Order from the approved Wesley Theological Seminary Campus Plan states that at least 200 parking spaces are to be maintained on campus.

Of the 350 garage spaces, 105 spaces will be reserved for general WTS campus use (not for residents of the new building). This number is in keeping with existing conditions; therefore, no net new parking is proposed for non-resident WTS usage.

The existing residential building being removed provides 90 beds for WTS use. The new 215 du building will provide a total of 659 beds. 90 of those beds will be for WTS use to replace the 90 beds being removed. Therefore, the new residential building will provide approximately 569 beds for non-WTS residents.

With 207 net new parking spaces and 569 net new beds, the effective parking ratio for those net new beds is 0.36 spaces per net new bed.

It should also be noted that because the proposed residential building is for WTS and AU students only, its parking supply will function primarily as long-term vehicle storage and is not expected to generate significant peak hour vehicle trips, as is typical of more traditional residential parking facilities.

The parking garage's location and access points within the site are shown on Figure 6.

Bicycle Facilities

The Wesley Campus Plan will meet 2016 Zoning Regulations requirements for long-term and short-term bicycle parking. Per the Zoning Regulations, the project is required to provide the following bicycle facilities:

- Long-Term Bicycle Parking Spaces (62 required)
 - o One (1) space per 3 dwelling units
 - o One (1) space per 10,000 SF of retail space
- Short-Term Bicycle Parking Spaces (11 required)
 - o One (1) space per 20 dwelling units
 - o One (1) space per 3,500 SF of retail space

The project will meet or exceed zoning requirements by providing at least 62 long-term bicycle parking spaces inside the garage and at least 12 short-term bicycle parking spaces on exterior racks within the site. The exact location of the short-term bicycle parking spaces is still to be determined. The long-term bicycle spaces will adhere to Subtitle C § 805.9 of DC's zoning requirements, as well as DDOT's Bike Parking Guide, which stipulate that long-term spaces be located indoors in a parking garage or bike storage room, and that at least 50 percent of required long-term spaces be placed horizontally on the floor or ground, without bicycles being suspended.

Pedestrian Facilities

The Wesley Campus Plan will ensure pedestrian facilities along the site's WTS driveway frontage meet DDOT and ADA standards. The Applicant is also coordinating with American University (AU) on options to maintain the existing pedestrian connection between the two campuses, located on the east side of the project site.

Transportation Demand Management

Transportation Demand Management (TDM) is the application of policies and strategies used to reduce travel demand or to redistribute demand to other times or spaces. TDM elements typically focus on reducing the demand of single-occupancy, private vehicles during peak period travel times or on shifting single-occupancy vehicular demand to off-peak periods.

The TDM plan for the proposed project is based on zoning regulations in addition to DDOT expectations for TDM programs for developments of this type and size. As such, the applicant proposes the following TDM measures for the project.

- Unbundle the cost of vehicle parking from the lease for each residential unit and charge a minimum rate based on the average market rate within a quarter mile. Only hourly, daily, weekly, or monthly rates will be charged.
 Free parking, validation, or discounted rates will not be offered.
- Identify Transportation Coordinators for the planning, construction, and operations phases of development.
 The Transportation Coordinators will act as points of contact with DDOT, goDCgo, and Zoning Enforcement.
- Will provide Transportation Coordinators' contact information to goDCgo, conduct an annual commuter survey of employees on-site, and report TDM activities and data collection efforts to goDCgo once per year.
- Transportation Coordinators will develop, distribute, and market various transportation alternatives and options to the residents, including promoting transportation events (i.e., Bike to Work Day, National Walking Day, Car Free Day) on property website and in any internal building newsletters or communications.
- Transportation Coordinators will receive TDM training from goDCgo to learn about the TDM conditions for this project and available options for implementing the TDM Plan.
- Provide residents who wish to carpool with detailed carpooling information and will be referred to other carpool matching services sponsored by the Metropolitan Washington Council of Governments (MWCOG) or other comparable service if MWCOG does not offer this in the future.
- Will meet ZR16 short- and long-term bicycle parking requirements by providing 62 long-term spaces and 12 short-term spaces free of charge to residents.
- Long-term bicycle storage rooms will accommodate non-traditional sized bikes including cargo, tandem, and kids' bikes.
- Provide welcome packets to all new residents that should, at a minimum, include the Metrorail pocket

- guide, brochures of local bus lines (Circulator and Metrobus), carpool and vanpool information, CaBi coupon or rack card, Guaranteed Ride Home (GRH) brochure, and the most recent DC Bike Map. Brochures can be ordered from DDOT's goDCgo program by emailing info@godcgo.com.
- Transportation Coordinator will subscribe to goDCgo's residential newsletter.
- Post all TDM commitments on website, publicize availability, and allow the public to see what commitments have been promised.
- Provide a FREE SmarTrip card to every new resident and a complimentary Capital Bikeshare coupon good for one ride.

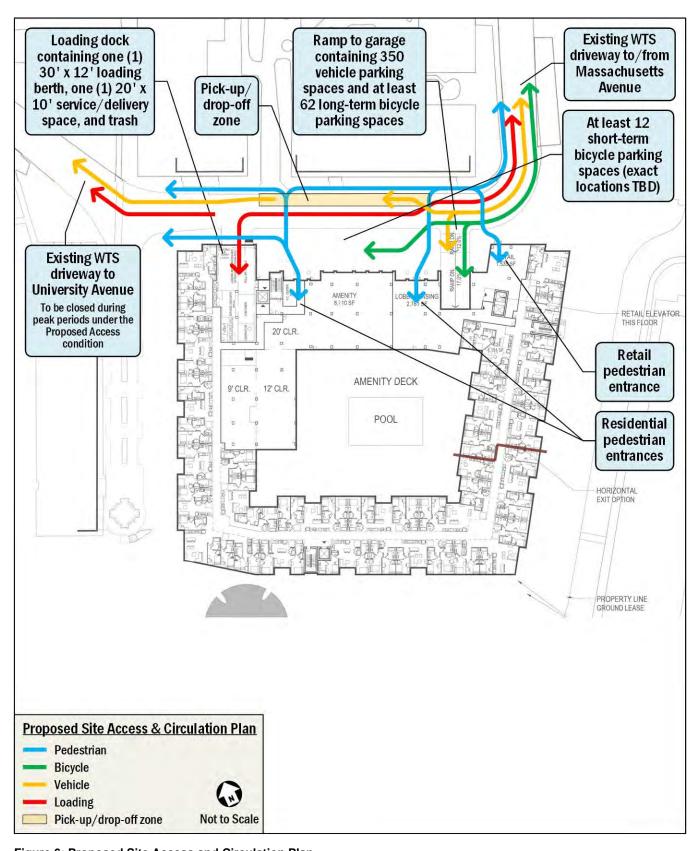


Figure 6: Proposed Site Access and Circulation Plan

Travel Demand Assumptions

This section outlines the transportation demand for the Wesley Campus Plan. It summarizes the projected trip generation of the proposed project by mode, which forms the basis for the sections that follow. These assumptions were vetted and approved by DDOT as a part of the scoping process for the study.

Traditionally, weekday peak hour trip generation is calculated based on the methodology outlined in the Institute of Transportation Engineers' (ITE) *Trip Generation*, 10th Edition. This methodology was supplemented to account for the urban nature of the project (ITE *Trip Generation* provides data for non-urban, low transit use sites) and to generate trips for multiple modes, as vetted and approved by DDOT.

Note that the trip generation shown below, the traffic forecasts presented in this report and the capacity analyses are based on the initial plan presented during the CTR scoping process that included 219 dwelling units and 690 beds. Since the plan has since been reduced to 215 dwelling units and 659 beds, these analyses represent a conservatively high estimate of the impact for the proposed project. For reference purposes, updated trip generation for the current 659-bed facility is provided in the technical attachments.

Proposed Site Trip Generation

The residential portion of the project's proposed trip generation was calculated based on ITE land use 225, *Off-Campus Student Apartment - Adjacent to Campus*, while the retail portion was calculated based on ITE land use 820, *Shopping Center.* Trips were split into different modes using assumptions derived from census data for people that currently live or work near the site, WMATA ridership survey data, and the proposed parking supply. A summary of the mode split assumptions is provided in Table 1.

Table 1: Mode Split Assumptions

Land Use	Mode						
Lanu USe	Drive	Transit	Bike	Walk			
Residential	20%	50%	5%	25%			
Retail	50%	25%	5%	20%			

A summary of the multimodal trip generation for the project is provided in Table 2 for the AM and PM peak hours. The project is expected to generate 14 vehicular trips (6 in, 8 out) during the AM peak hour, and 33 vehicular trips (16 in, 17 out) during the PM peak hour. Detailed calculations are included in the Technical Attachments.

Table 2: Multimodal Trip Generation

Mada	Mada Calit	Land Use	AM Peak Hour			PM Peak Hour		
Mode	Mode Split		ln	Out	Total	In	Out	Total
	20%	Residential	5	8	13	14	16	30
Auto (veh/hr)	50%	Retail	1	0	1	2	1	3
(**************************************		Total	6	8	14	16	17	33
	50%	Residential	16	22	38	44	43	87
Transit (ppl/hr)	25%	Retail	1	0	1	1	2	3
(PP#111)		Total	17	22	39	45	45	90
	5%	Residential	2	2	4	4	5	9
Bike (ppl/hr)	5%	Retail	0	0	0	0	1	1
(PP#111)		Total	2	2	4	4	6	10
	25%	Residential	8	11	19	22	21	43
Walk (ppl/hr)	20%	Retail	0	0	0	1	1	2
(PP#111)		Total	8	11	19	23	22	45

Traffic Operations

This chapter provides a summary of an analysis of the existing and future roadway capacity surrounding the site. Included is an analysis of potential vehicular impacts of the Wesley Campus Plan.

The purpose of the capacity analysis is to:

- Determine the existing capacity of the study area roadways:
- Determine the overall impact of the project on the study area roadways; and
- Discuss any potential improvements to accommodate the additional vehicular trips.

This analysis was performed by determining the traffic volumes and roadway capacity for Existing Conditions, Background (nobuild) Conditions, and Total Future (build) Conditions. The scope of the capacity analysis was developed based on DDOT guidelines and agreed upon by DDOT staff.

The capacity analysis focuses on the weekday AM and PM commuter peak hours.

This chapter concludes:

- Under Existing Conditions, three (3) study intersections operate at an unacceptable level of service based on the HCM capacity analyses, and one (1) study intersection experiences queues that exceed available storage.
- Under Background Conditions, three (3) study intersections operate at an unacceptable level of service based on the HCM capacity analyses, and one (1) study intersection experiences queues that exceed available storage.
- Under Total Future Conditions with the Existing Access, three (3) study intersections operate at an unacceptable level of service based on the HCM capacity analyses, and two (2) study intersections experience queues that exceed available storage.
- Under Total Future Conditions with the Proposed Access, two (2) study intersections operate at an unacceptable level of service based on the HCM capacity analyses, and one (1) study intersection experiences queues that exceed available storage.

- Two (2) study intersections met the threshold for requiring mitigation measures as a result of the proposed development:
 - Massachusetts Avenue and Wesley Circle NW (PM)
 - Massachusetts Avenue and WTS Driveway
 NW (PM)
- Potential mitigation measures were identified at these intersections in the form of a robust Transportation Demand Management (TDM) plan.
- Overall, this report concludes that the proposed project will not have a detrimental impact to the surrounding vehicular network, with the implementation of all recommended site design elements and Transportation Demand Management (TDM) measures.

Study Area, Scope, & Methodology

This section outlines the vehicular trips generated in the study area along the vehicular access routes and defines the analysis assumptions.

The scope of the analysis contained within this report was discussed with and agreed upon by DDOT. The general methodology of the analysis follows national and DDOT guidelines on the preparation of transportation impact evaluations of site development. The approved scope is included in the technical attachments.

Capacity Analysis Scenarios

The vehicular capacity analyses were performed to determine whether the project will lead to adverse impacts on traffic operations. A review of potential impacts to other modes is outlined later in this report. This is accomplished by comparing three (3) future scenarios:

- Without the project (referred to as the Background Conditions);
- With the project approved and constructed with the Existing Access condition; and
- With the project approved and constructed with the Proposed Access condition; and

Specifically, the roadway capacity analysis examines the following scenarios:

- Existing Conditions (2021 Existing Conditions);
- Future Conditions without the Project (2024 Background Conditions); and
- Future Conditions with the Project and the Existing
 Access condition that maintains the outbound traffic
 flow to University Avenue during the peak periods (2024
 Total Future Conditions with Existing Access).
- Future Conditions with the Project and the Proposed Access condition that restricts site traffic on University Avenue during the peak periods (2024 Total Future Conditions with Proposed Access).

Study Area

The study area of the analysis is a set of intersections where detailed capacity analyses were performed for the scenarios listed above. The set of intersections decided upon during the study scoping process with DDOT are those intersections most likely to have potential impacts or require changes to traffic operations to accommodate the project. Although it is possible that impacts will occur outside of the study area, those impacts are neither significant enough to be considered a material adverse impact nor worthy of mitigation measures.

Based on the projected future trip generation and the location of the site access points, the following intersections were selected:

- Massachusetts Avenue & 46th Street/Tilden Street/Wesley Circle NW
- 2. University Avenue & Wesley Circle NW
- 3. Massachusetts Avenue & Wesley Circle NW
- University Avenue & Sedgwick Street/WTS Driveway NW
- 5. Massachusetts Avenue & 45th Street NW
- 6. Massachusetts Avenue & WTS Driveway NW
- Massachusetts Avenue & Glover Gate/Katzen Driveway NW

Figure 7 shows a map of the study area intersections.

Geometry and Operations Assumptions

The following section reviews the roadway geometry and operations assumptions made and the methodologies used in the roadway capacity analyses.

2021 Existing Geometry and Operations Assumptions

Gorove Slade made observations and confirmed the existing lane configurations and traffic controls at the intersections within the study area. Existing signal timings and offsets were obtained from DDOT.

The lane configurations and traffic controls for the Existing Conditions are shown on Figure 8.

2024 Background Geometry and Operations Assumptions

The configurations and traffic controls for the 2024 Background Conditions were based on those for the 2021 Existing Conditions with the addition of background improvements.

Following national and DDOT methodologies, a background improvement must meet the following criteria to be incorporated into the analysis:

- · Be funded; and
- Have a construction completion date prior or close to the project.

Based on these criteria, there were no background improvements assumed in the analysis.

The lane configurations and traffic controls for the Background Conditions, which are the same as those of the Existing Conditions, are shown on Figure 8.

2024 Total Future Conditions Geometry and Operations Assumptions

The configurations and traffic controls for the 2024 Total Future Conditions were based on those for the 2024 Background Conditions with the addition of the proposed project.

The lane configurations and traffic controls for the Total Future Conditions, which are the same as those of the Existing and Background Conditions, are shown on Figure 8. Although there are different traffic volume assumptions for Total Future Conditions with Existing Access and with Proposed Access, the lane configurations and traffic controls are the same for both.

Traffic Volume Assumptions

The following section reviews the traffic volume assumptions and methodologies used in the roadway capacity analyses.

2021 Existing Traffic Volumes

Data collection for all intersections was not possible during fall 2021 as traffic volumes were not representative of typical conditions due to the ongoing COVID-19 emergency. To establish baseline conditions, the study analyzed 2021 traffic volumes comprised of turning movement count data collected in 2012 and February 2020 with applied growth rates based on the data collection year, as well as turning movement count data collected in September 2021 at intersections for which historical data was not available. The grown volumes from these sources were then balanced conservatively (adding volumes to the overall network) to create 2021 existing conditions. The traffic volume data sources are summarized below.

2012 WTS Campus Plan Update

Turning movement counts collected in 2012 for this project's TIA were available for the following intersections:

- University Avenue & Sedgwick Street/WTS Driveway
 NW: and
- Massachusetts Avenue & WTS Driveway NW.

The unadjusted peak hour traffic volumes from this source are shown in Figure 9.

2021 AU Campus Plan

Turning movement counts collected in February 2020 (prior to the COVID-19 emergency) for this project's CTR were available for the following intersections:

- Massachusetts Avenue & 46th Street/Tilden Street/Wesley Circle NW;
- Massachusetts Avenue & 45th Street NW; and
- Massachusetts Avenue & Glover Gate/Katzen Driveway
 NW

The unadjusted peak hour traffic volumes from this source are shown in Figure 9.

2021 Turning Movement Counts

Turning movement counts were collected on Wednesday, September 22, 2021 for the following intersections for which historical turning movement count data was not available:

University Avenue & Wesley Circle NW; and

Massachusetts Avenue & Wesley Circle NW.

The unadjusted peak hour traffic volumes from this source are shown in Figure 9.

<u>Volumes Generated by Regional Traffic Growth through</u> 2021

Traffic growth was applied to the 2012 and 2020 volumes based on their respective data collection year to establish 2021 existing volumes. These background growth volumes are shown in Figure 10.

The applied growth rates for 2012/2020 through 2021 are based on historic AADT data and are shown on Table 3. Detailed growth rate assumptions are provided in the Technical Attachments.

The 2021 Existing peak hour traffic volumes are shown in Figure 11.

2024 Background Traffic Volumes (without the Project)

The traffic projections for the 2024 Background Conditions consist of the 2021 Existing volumes with the following additions:

- The addition of traffic generated by developments expected to be completed prior to the project (known as background developments); and
- The addition of inherent growth on the roadway (representing regional traffic growth).

Volumes Generated by Background Developments

Following national and DDOT methodologies, a background development must meet the following criteria to be incorporated into the analysis:

- Be located in the study area, defined as having an origin or destination point within the cluster of study area intersections;
- Have entitlements; and
- Have a construction completion date prior or close to the future analysis year of 2024.

Based on these criteria, and as discussed with and agreed upon by DDOT, there are no developments meeting the above criteria; therefore there are no background developments included in this analysis.

Volumes Generated by Regional Traffic Growth

While background developments represent local traffic changes, regional traffic growth is typically accounted for using growth

rates. The growth rates used in this analysis are based on MWCOG's currently adopted regional transportation model, comparing the difference between the year 2021 and 2024 model scenarios. The growth rates observed in this model served as a basis for analysis assumptions, and a conservative 0.10 percent annual growth rate was applied to roadways where negative growth was observed. The applied growth rates are shown in Table 3. The traffic volumes generated by the inherent growth along the network between 2021 and 2024 are shown on Figure 12.

The existing peak hour volumes presented in Figure 11 were combined with the background growth peak hour volumes shown in Figure 12 to establish the 2024 Background traffic volumes. The traffic volumes for the 2024 Background Conditions are shown in Figure 13.

2024 Total Future with Existing Access Traffic Volumes (Site Access Consistent with Existing Conditions)

The 2024 Total Future with Existing Access traffic volumes consist of the following:

- Existing volumes, shown on Figure 11;
- Inherent growth on study area roadways, shown on Figure 12;
- Site-generated volumes under existing vehicular access conditions, shown on Figure 19.

Site-Generated Volumes (Existing Access Conditions)

Trip distribution for the site-generated trips under existing vehicular access conditions was determined based on:

- Census Transportation Planning Products (CTPP)
 Traffic Analysis Zone (TAZ) data;
- Existing and future travel patterns in the study area; and
- Inbound and outbound site travel patterns as determined by vehicular access with existing access conditions (maintaining the existing WTS campus circulation with the University Avenue driveway exit consistent with existing conditions).

Based on this review and the site access locations, the sitegenerated trips were distributed through the study area intersections. Trip distribution assumptions and specific routings were analyzed for inbound and outbound trips. Inbound and outbound distribution assumptions for the project are provided in Figure 14 and Figure 15, respectively. Detailed distributions at each study intersection are shown in Figure 17. Site-generated peak hour volumes under existing vehicular access conditions are shown in Figure 19.

The traffic volumes for the 2024 Total Future with Existing Access Conditions are shown on Figure 21.

2024 Total Future with Proposed Access Traffic Volumes (University Avenue Site Egress Closed During Peak Periods)

The 2024 Total Future with Proposed Access traffic volumes consist of the following:

- Existing volumes, shown on Figure 11;
- Inherent growth on study area roadways, shown on Figure 12;
- Site-generated volumes under proposed access conditions with the University Avenue site egress closed (access for delivery vehicles maintained) during the AM and PM peak periods, shown on Figure 20.

Site-Generated Volumes (Proposed Access Conditions)

Trip distribution for the site-generated trips under proposed vehicular access conditions was determined based on:

- Census Transportation Planning Products (CTPP)
 Traffic Analysis Zone (TAZ) data;
- Existing and future travel patterns in the study area; and
- Inbound and outbound site travel patterns as determined by vehicular access with proposed access conditions (with the University Avenue driveway resitricted during the AM and PM peak periods – delivery vehicle access maintained).
 - All exiting site traffic rerouted to the right turn egress movement onto Massachusetts Avenue.

Based on this review and the site access locations, the sitegenerated trips were distributed through the study area intersections. Trip distribution assumptions and specific routings were analyzed for inbound and outbound trips. Inbound and outbound distribution assumptions for the project are provided in Figure 14 and Figure 16, respectively. Detailed distributions at each study intersection are shown in Figure 18.

Site-generated peak hour volumes under proposed vehicular access conditions are shown in Figure 20.

The traffic volumes for the 2024 Total Future with Proposed Access Conditions are shown on Figure 22.

Table 3: Applied Annual and Total Growth Rates

Roadway	Dir.	Proposed Annual Growth Rate Between 2020 and 2021 ¹		Proposed Total Growth Between 2020 and 2021		Proposed Annual Growth Rate Between 2021 and 2024 ²		Proposed Total Growth Between 2021 and 2024	
		AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
Massachusetts	EB	0.10%	0.10%	0.10%	0.10%	0.30%	0.10%	0.90%	0.30%
Ave NW	WB	2.00%	0.50%	2.00%	0.50%	0.10%	0.30%	0.30%	0.90%
Sedgewick St	EB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
NW	WB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
ACHE CLENINA	NB	2.00%	0.10%	2.00%	0.10%	0.10%	0.10%	0.30%	0.30%
46th St NW	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
University Ave	NB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
NW ³	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
4545 C4 NIVA/	NB	0.50%	0.50%	0.50%	0.50%	0.10%	0.10%	0.30%	0.30%
45th St NW	SB	2.00%	0.10%	2.00%	0.10%	0.90%	0.10%	2.72%	0.30%
Campus Dr	NB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
NW .	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%

¹ These rates were applied to volumes recorded in February 2020 that were used to establish 2021 existing conditions. Rates are based on MWCOG's currently adopted regional transportation model for this time period.

² These rates were applied to volumes grown from 2021 existing conditions. Rates are based on MWCOG's currently adopted regional transportation model for this time period.

³ Study intersection #3 (University Ave & Sedgwick St/WTS Exit NW) only had available traffic counts from 2012, not February 2020 like the other study intersections. Therefore, to establish 2021 Existing Conditions, annual growth rates of 0.10% were applied to the northbound and southbound volumes of University Ave NW at this intersection for every year between 2012 and 2021, totaling 0.90% for each direction.

Vehicular Analysis Results

Intersection Capacity Analysis

Intersection capacity analyses were performed for the four (4) scenarios outlined previously at the intersections contained within the study area during the AM and PM peak hours. Synchro version 10 was used to analyze the study intersections based on the Highway Capacity Manual (HCM) 2000 methodology.

Further analyses were also performed at the WTS driveway intersection with Massachusetts Avenue using the SimTraffic modeling software to account for gaps in through traffic that would be provided by the upstream traffic signal to the east and the pedestrian signal to the west. The results of these simulations indicate that the WTS driveway on Massachusetts Avenue operates with LOS C or better during all scenarios studied. The simulation runs were based on 15-minute seeds with 60-minute run times, and the results shown were taken as the average of five (5) model runs.

The results of the capacity analyses are expressed in level of service (LOS) and delay (seconds per vehicle) for each approach. A LOS grade is a letter grade based on the average delay (in seconds) experienced by motorists traveling through an intersection. LOS results range from "A" being the best to "F" being the worst. LOS D is typically used as the acceptable LOS threshold in the District; although LOS E or F is sometimes accepted in urbanized areas if vehicular improvements would be a detriment to safety or non-auto modes of transportation.

The LOS capacity analyses were based on: (1) the intersection peak hour traffic volumes; (2) the lane use and traffic controls; and (3) the HCM methodologies (using *Synchro* software). The average delay of each approach and LOS is shown for all intersections in addition to the overall average delay and intersection LOS grade. Detailed LOS descriptions and the analysis worksheets are contained in the Technical Attachments.

Table 4 shows the results of the capacity analyses, including LOS and average delay per vehicle (in seconds) for the 2021 Existing, 2024 Background, 2024 Total Future with Existing Access, and 2024 Total Future with Proposed Access scenarios. Table 5 shows a comparison of the volume to capacity (v/c) ratios, while Table 6 shows a comparison of queuing results.

Intersection Capacity Under Existing Conditions

As shown in Table 4, two (2) of the study intersections operate at unacceptable conditions or have one or more approaches operating at unacceptable levels during Existing Conditions:

- Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW
 - Southwestbound (PM)
- Massachusetts Ave & Wesley Cir NW
 - Northbound (PM)

Intersection Capacity Under Background Conditions

As shown in Table 4, two (2) of the study intersections operate at unacceptable conditions or have one or more approaches operating at unacceptable levels during Background Conditions:

- Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW
 - Southwestbound (PM)
- Massachusetts Ave & Wesley Cir NW
 - Northbound (PM)

Intersection Capacity Under Future with Existing Access Conditions

As shown in Table 4, two (2) of the study intersections operate at unacceptable conditions or have one or more approaches operating at unacceptable levels during Total Future with Existing Access Conditions:

- Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW
 - Southwestbound (PM)
- Massachusetts Ave & Wesley Cir NW
 - o Northbound (PM)

Intersection Capacity Under Future with Proposed Access Conditions

As shown in Table 4, one (1) of the study intersections operates at unacceptable conditions or have one or more approaches operating at unacceptable levels during Total Future with Proposed Access Conditions:

- Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW
 - Southwestbound (PM)

Queuing Analysis

In addition to the capacity analyses presented above, a queuing analysis was performed at each of the study intersections. The queuing analysis was performed using *Synchro* software. The 50th percentile and 95th percentile maximum queue lengths are shown for each lane group at the study area's signalized intersections. The 50th percentile maximum queue is the maximum back of queue on a typical cycle. The 95th percentile

queue is the maximum back of queue with 95th percentile traffic volumes. For unsignalized intersections, the 95th percentile queue is reported for each lane group (including free-flowing left turns and stop-controlled movements) based on the HCM calculations.

Table 6 shows the queuing results for the study intersections, including 50th and 95th percentile queues for the 2021 Existing, 2024 Background, 2024 Total Future with Existing Access, and 2024 Total Future with Proposed Access scenarios.

Queuing Under Existing Conditions

As shown in Table 6, one (1) of the study intersections has one or more lane group that exceeds the given storage length during Existing Conditions:

- Massachusetts Ave & Glover Gate/Katzen Dwy NW
 - Northeastbound left/thru (PM)
 - Southwestbound left/thru/right (AM, PM)

Queuing Under Background Conditions

As shown in Table 6, one (1) of the study intersections has one or more lane group that exceeds the given storage length during Background Conditions:

- Massachusetts Ave & Glover Gate/Katzen Dwy NW
 - o Northeastbound left/thru (PM)
 - Southwestbound left/thru/right (AM, PM)

Queuing Under Future with Existing Access Conditions

As shown in Table 6, two (2) of the study intersections have one or more lane group that exceeds the given storage length during Total Future with Existing Access Conditions:

- Massachusetts Ave & Wesley Cir NW
 - Northbound left/right (PM)
- Massachusetts Ave & Glover Gate/Katzen Dwy NW
 - Northeastbound left/thru (PM)
 - Southwestbound left/thru/right (AM, PM)

Queuing Under Future with Proposed Access Conditions

As shown in Table 6, one (1) of the study intersections has one or more lane group that exceeds the given storage length during Total Future with Proposed Access Conditions:

- Massachusetts Ave & Glover Gate/Katzen Dwy NW
 - Northeastbound left/thru (PM)
 - Southwestbound left/thru/right (AM, PM)

Mitigation Measures

Based on DDOT standards, the project is considered to have an impact at an intersection within the study area if any of the following conditions are met:

- The capacity analyses show a LOS E or F at an intersection or along an approach in Future conditions with the project where one does not exist in Background Conditions;
- There is an increase in delay at any approach or overall intersection operating under LOS E or F of greater than five (5) percent when compared to Background Conditions;
- A 95th percentile queue exceeds storage along an approach in Future Conditions with the project where it does not in Background Conditions; or
- There is an increase in the 95th percentile queue by more than 150 feet along an approach in that exceeds storage in Background Conditions.

Based on these criteria, there are impacts at one intersection under Total Future with Existing Access and no impacts under Total Future with Proposed Access. These impacts are detailed below.

Massachusetts Avenue and Wesley Circle NW (Total Future with Existing Access Conditions)

Northbound Approach

The northbound¹ approach of Wesley Circle NW is projected to increase delay by more than 5 percent during Total Future with Existing Access Conditions when compared to Background Conditions during the afternoon peak hour.

This condition cannot be mitigated through either geometric or traffic signal modifications because there can only be one lane merging onto Massachusetts Avenue NW, and because the intersection is unsignalized. Rather, mitigation is proposed to be

¹ This approach is coded in *Synchro* as northbound to differentiate it from the other approaches, but it is actually the eastbound approach of Wesley Circle NW as it merges onto southeastbound Massachusetts Avenue NW.

addressed through a robust Transportation Demand
Management (TDM) plan consistent with DDOT's Baseline Plan.

Massachusetts Avenue and WTS Driveway NW (Total Future with Existing Access Conditions and Total Future with Proposed Access Conditions)

Northbound Approach

With the removal of WTS outbound traffic (delivery vehicle access maintained) from University Avenue during the peak periods evaluated as part of Total Future with Proposed Access Conditions, the northbound² approach of Wesley Circle NW would realize a reduction in delay and would no longer exceed adequacy standards.

Under Total Future with Proposed Access Conditions, the project would not have any vehicular impacts within the study area that would warrant mitigation per the DDOT CTR guidelines.

² This approach is coded in *Synchro* as northbound to differentiate it from the other approaches, but it is actually the eastbound approach of Wesley Circle NW as it merges onto southeastbound Massachusetts Avenue NW.

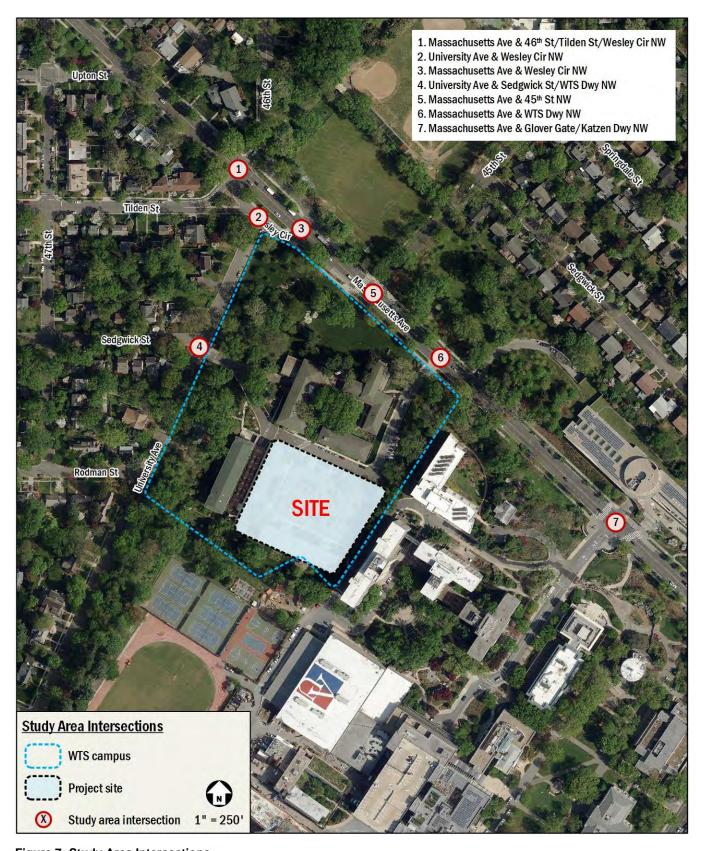


Figure 7: Study Area Intersections

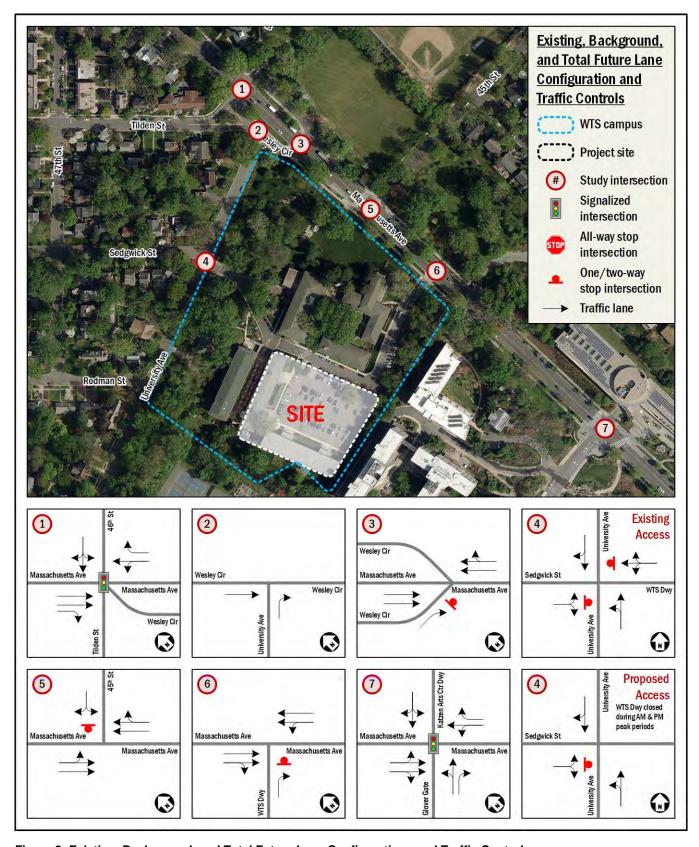


Figure 8: Existing, Background, and Total Future Lane Configurations and Traffic Controls

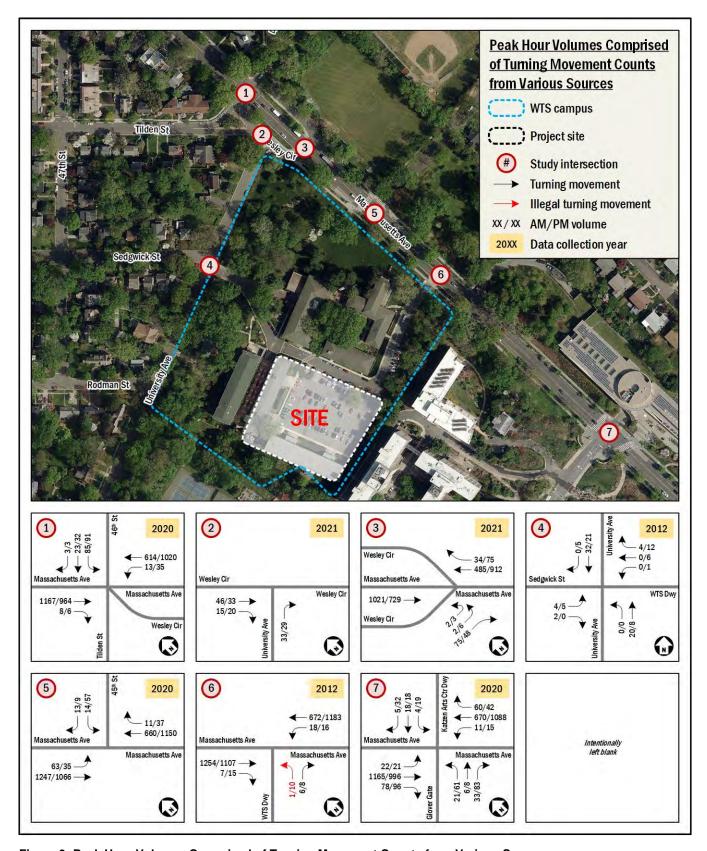


Figure 9: Peak Hour Volumes Comprised of Turning Movement Counts from Various Sources

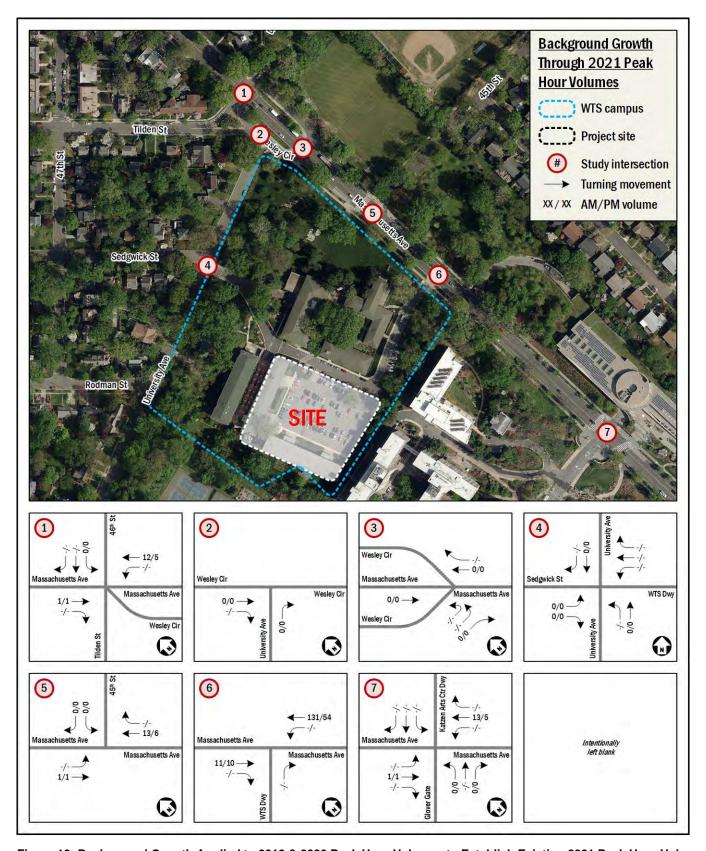


Figure 10: Background Growth Applied to 2012 & 2020 Peak Hour Volumes to Establish Existing 2021 Peak Hour Volumes

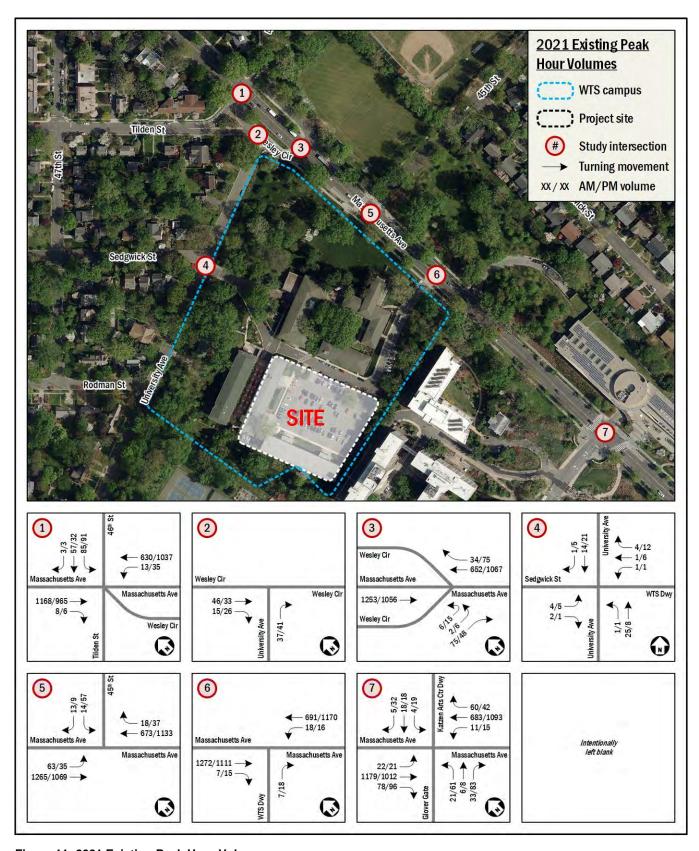


Figure 11: 2021 Existing Peak Hour Volumes

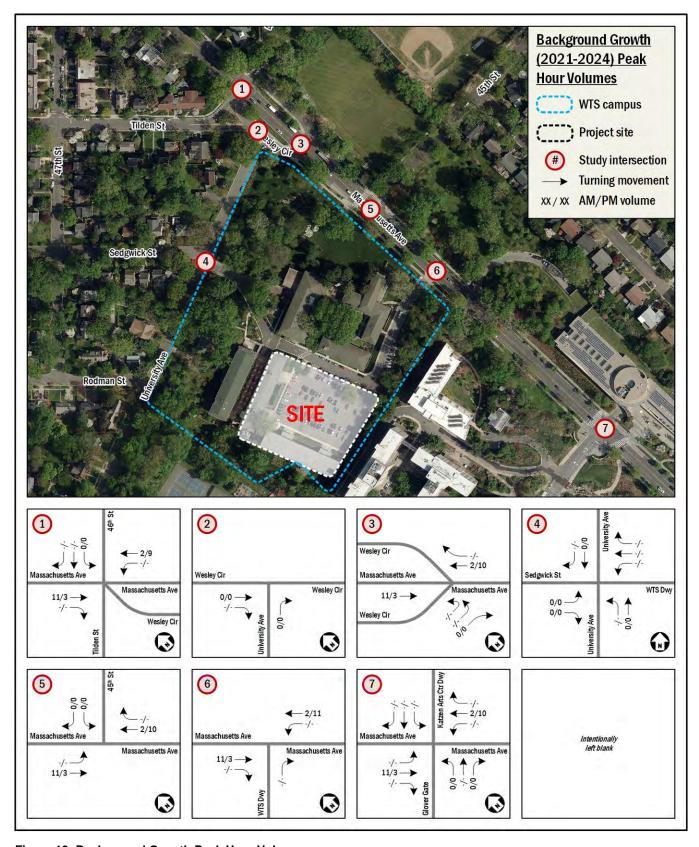


Figure 12: Background Growth Peak Hour Volumes

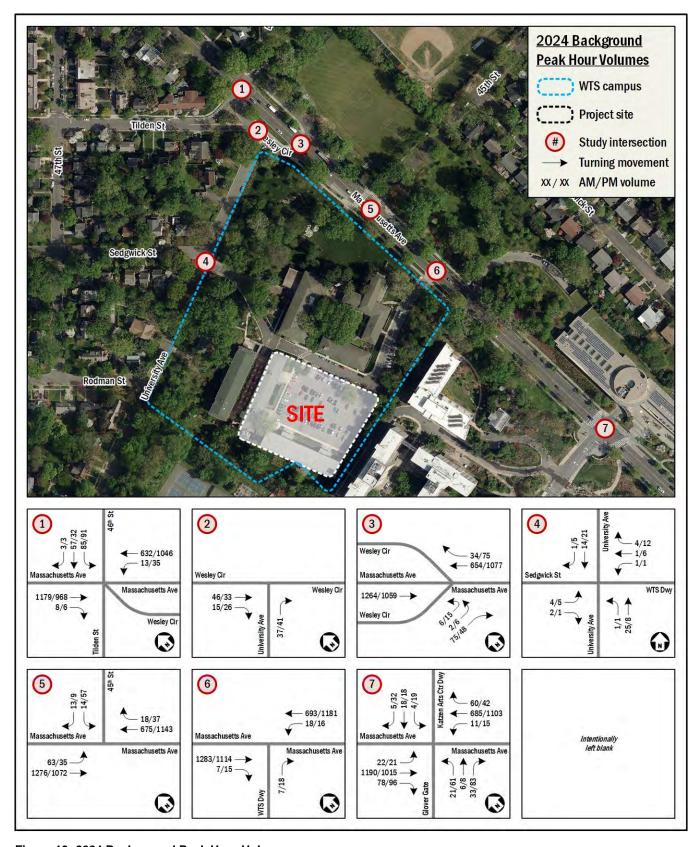


Figure 13: 2024 Background Peak Hour Volumes



Figure 14: Inbound Trip Distribution (Total Future with Existing Access and Total Future with Proposed Access)

Figure 15: Outbound Trip Distribution (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)

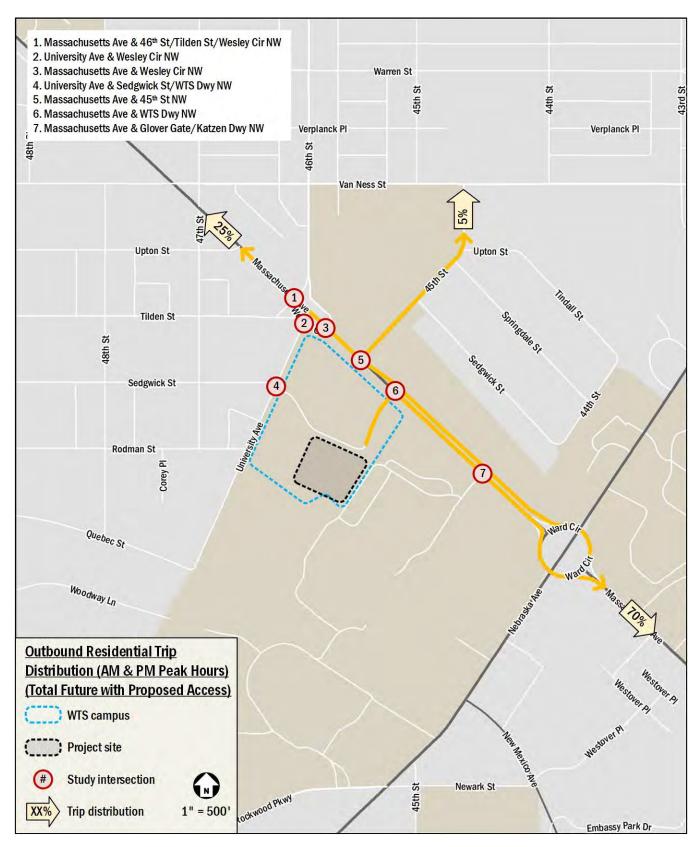


Figure 16: Outbound Trip Distribution (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)

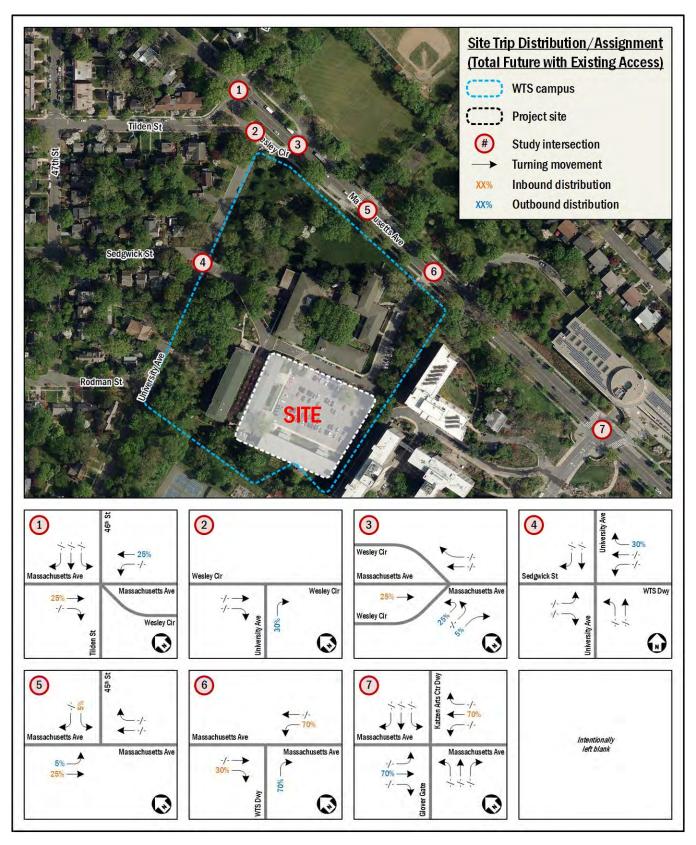


Figure 17: Trip Distribution at Study Intersections (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)

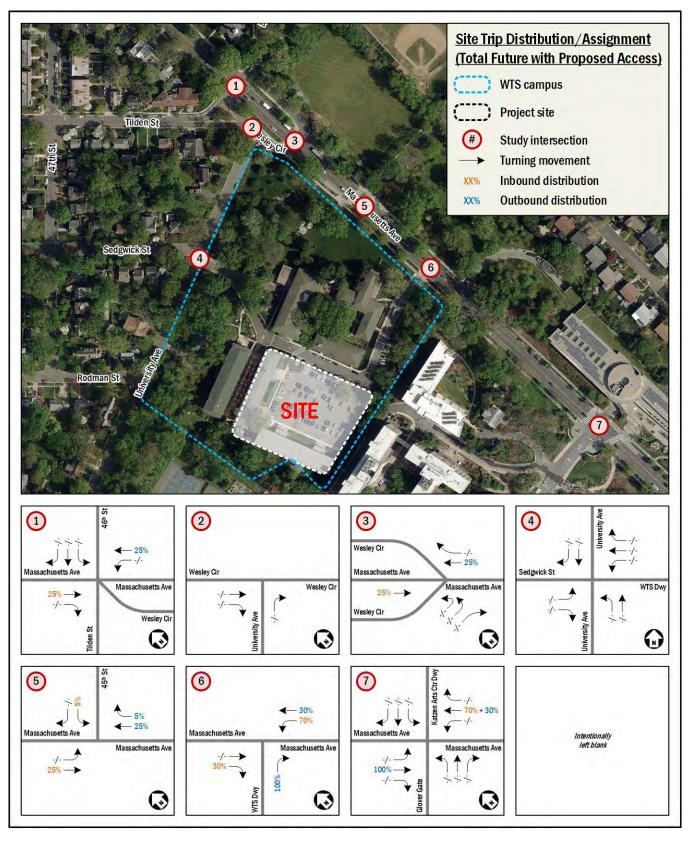


Figure 18: Trip Distribution at Study Intersections (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)

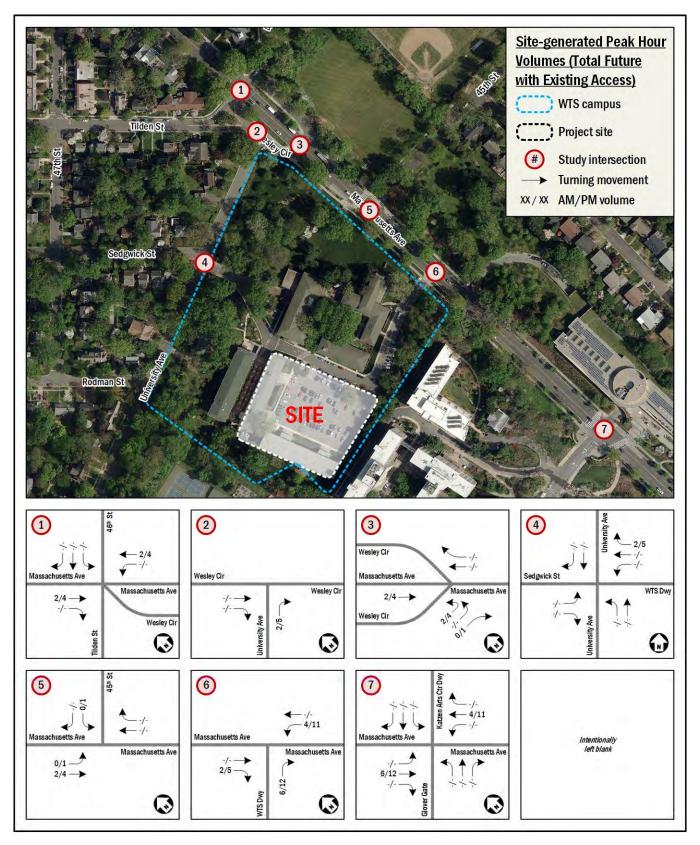


Figure 19: Site-generated Peak Hour Volumes (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)

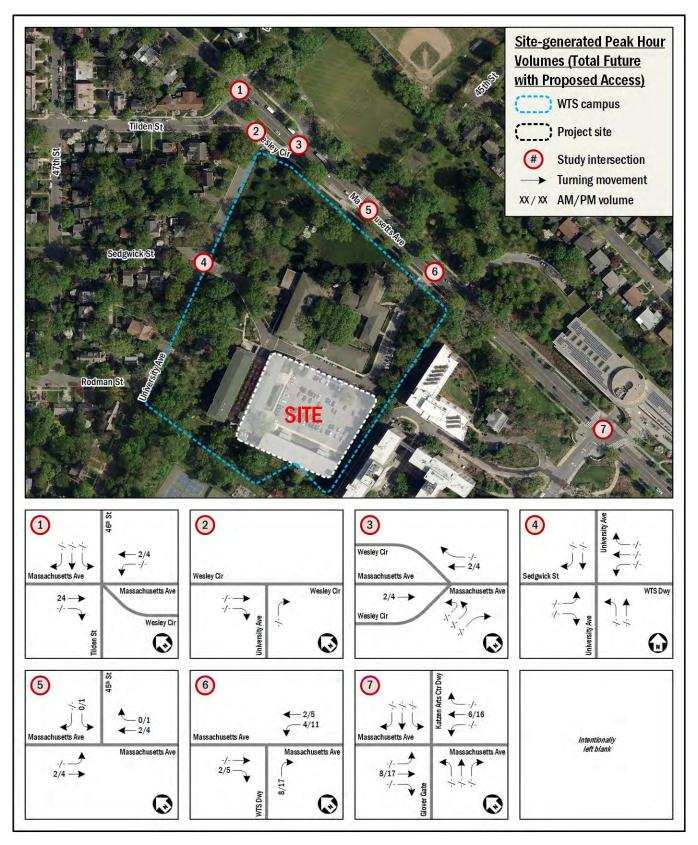


Figure 20: Site-generated Peak Hour Volumes (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)

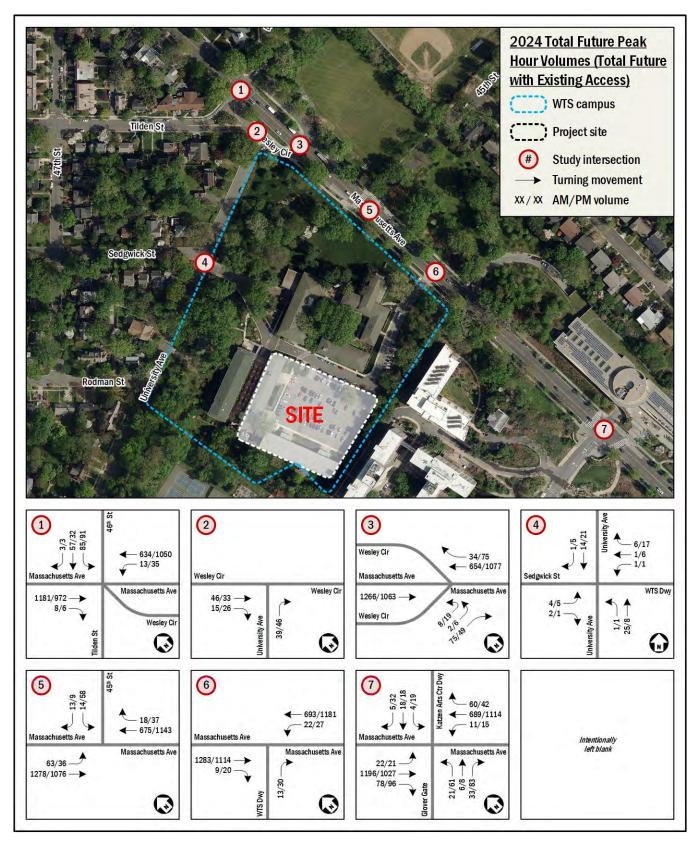


Figure 21: 2024 Total Future Peak Hour Volumes (Total Future with Existing Access: w/ University Ave Driveway Exit During Peak Periods)

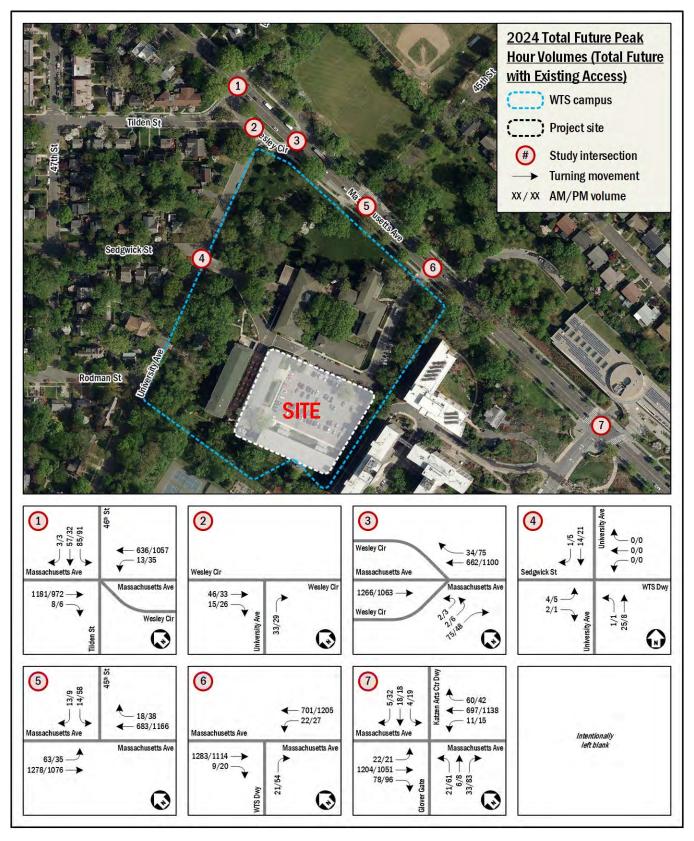


Figure 22: 2024 Total Future Peak Hour Volumes (Total Future with Proposed Access: w/ University Ave Driveway Exit Restricted During Peak Periods – Delivery Vehicle Access Maintained)

Table 4: LOS Comparison

	Intersection and Approach		Existin	g (2021)		Background (2024)				Future with Existing Access (2024) (w/ Existing Access Scenario)				Future with Proposed Access (2024) (University Dr Restricted During Peak Hours)			
		AM F	Peak	PM I	Peak	AM P	eak eak	PM F	Peak	AM F	Peak	PM I	Peak	AM I	Peak	PM F	Peak
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1.	Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW			•													
	Overall	11.2	В	8.6	Α	11.2	В	8.6	Α	11.2	В	8.6	Α	11.2	В	8.5	Α
	Southeastbound	10.9	В	6.7	Α	11.0	В	6.7	Α	11.1	В	6.8	Α	11.1	В	6.8	Α
	Northwestbound	2.6	Α	4.0	Α	2.6	Α	4.0	Α	2.6	Α	4.0	Α	2.5	Α	4.0	Α
	Northeastbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α
	Southwestbound	51.4	D	61.8	Е	51.4	D	61.8	Е	51.4	D	61.8	Е	51.4	D	61.8	Е
2.	University Ave & Wesley Cir NW																
	Eastbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0		0.0	
	Northbound	8.7	Α	8.7	Α	8.7	Α	8.7	Α	8.7	Α	8.7	Α	8.7	Α	8.7	Α
3.	Massachusetts Ave & Wesley Cir NW																
	Northbound (Eastbound)	14.1	В	41.3	Е	14.2	В	42.2	Е	15.2	С	47.9	Е	12.3	В	27.8	D
	Southeastbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α
	Northwestbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α
4.	University Ave & Sedgwick St/WTS Dwy NW																
	Eastbound	8.7	Α	8.8	Α	8.7	Α	8.8	Α	8.7	Α	8.9	Α	8.7	Α	8.7	Α
	Westbound	8.7	Α	8.7	Α	8.7	Α	8.7	Α	8.6	Α	8.7	Α	0.0	Α	0.0	Α
	Northbound	0.3	Α	0.7	Α	0.3	Α	0.7	Α	0.3	Α	0.7	Α	0.3	Α	0.7	Α
	Southbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α
5.	Massachusetts Ave & 45th St NW																
	Overall	0.5	Α	0.4	Α	0.5	Α	0.4	Α	0.5	Α	0.4	Α	0.5	Α	0.4	Α
	Southeastbound	0.7	Α	0.5	Α	0.7	Α	0.5	Α	0.7	Α	0.5	Α	0.7	Α	0.5	Α
	Northwestbound	0.1	Α	0.3	Α	0.1	Α	0.3	Α	0.1	Α	0.3	Α	0.1	Α	0.3	Α
	Southwestbound	0.0	Α	0.1	Α	0.0	Α	0.1	Α	0.0	Α	0.1	Α	0.0	Α	0.1	Α
6.	Massachusetts Ave & WTS Dwy NW																
	Northbound	14.8	В	380.1	F	14.9	В	385.5	F	15.1	С	611.8	F	15.3	С	1116.9	F
	Southeastbound	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α	0.0	Α
	Northwestbound	1.3	Α	46.8	D	1.3	Α	48.0	D	1.6	Α	103.2	F	1.6	Α	103.1	Α
	<u>SimTraffic</u>																
	Northbound			31.4	С			29.9	С			32.5	С			28.3	С
	Southeastbound			1.3	A			1.1	Ā			1.2	A			1.2	A
	Northwestbound			4.8	Α			5.1	Α			6.3	Α			6.7	Α
7.	Massachusetts Ave & Glover Gate/Katzen Dwy NW																
	Overall	12.7	В	13.7	В	12.9	В	13.7	В	12.9	В	13.8	В	13.1	В	14.0	В
	Southeastbound	11.9	В	10.5	В	12.1	В	10.5	В	12.2	В	10.6	В	12.3	В	10.9	В
	Northwestbound	10.0	В	10.6	В	10.1	В	10.7	В	10.1	В	10.8	В	10.3	В	11.0	В
	Northeastbound	48.8	D	47.1	D	48.8	D	47.1	D	48.8	D	47.1	D	48.8	D	47.1	D
	Southwestbound	47.4	D	45.4	D	47.4	D	45.4	D	47.4	D	45.4	D	47.4	D	45.4	D

Table 5: v/c Comparison

	Intersection and Movement	Existir	ng (2021)	Backgrou	und (2024)		ing Access (2024) ccess Scenario)	Future with Proposed Access (2024) (University Dr Restricted During Peak Hours)		
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	
		v/c	v/c	v/c	v/c	v/c	v/c	v/c	v/c	
1.	Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW									
	Southeastbound Thru	0.62	0.49	0.62	0.49	0.63	0.49	0.63	0.49	
	Southeastbound Right	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
	Northwestbound Thru	0.37	0.55	0.37	0.55	0.37	0.56	0.38	0.56	
	Southwestbound Thru	0.57	0.64	0.57	0.64	0.57	0.64	0.57	0.64	
2.	University Ave & Wesley Cir NW									
	Eastbound TR	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	
	Northbound Right	0.04	0.05	0.04	0.05	0.04	0.05	0.04	0.03	
3.	Massachusetts Ave & Wesley Cir NW									
	Northbound (Eastbound) LTR	0.18	0.43	0.18	0.43	0.20	0.49	0.14	0.28	
	Southeastbound Thru	0.38	0.32	0.38	0.32	0.38	0.33	0.38	0.33	
	Northwestbound TR	0.26	0.44	0.26	0.44	0.26	0.44	0.27	0.45	
4.	University Ave & Sedgwick St/WTS Dwy NW									
	Eastbound LR	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
	Westbound LTR	0.01	0.02	0.01	0.02	0.01	0.03	0.01	0.00	
	Northbound LT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Southbound TR	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	
5.	Massachusetts Ave & 45th St NW									
	Southeastbound LT	0.54	0.45	0.54	0.45	0.54	0.46	0.54	0.45	
	Northwestbound TR	0.23	0.38	0.23	0.39	0.23	0.39	0.23	0.39	
	Southwestbound LR	0.02	0.05	0.02	0.05	0.02	0.05	0.02	0.05	
6.	Massachusetts Ave & WTS Dwy NW									
	Northbound Right	0.02	0.87	0.02	0.88	0.04	1.47	0.06	2.67	
	Southeastbound Thru	0.55		0.56		0.56		0.56		
	Southeastbound TR	0.28	0.74	0.28	0.74	0.28	0.74	0.29	0.74	
	Northwestbound LT	0.04	0.52	0.04	0.53	0.05	0.89	0.05	0.89	
	Northwestbound Thru		0.51		0.51		0.51		0.53	
7.	Massachusetts Ave & Glover Gate/Katzen Dwy NW									
	Southeastbound LTR	0.70	0.69	0.70	0.69	0.71	0.70	0.71	0.71	
	Northwestbound LT	0.66		0.67		0.67		0.68		
	Northwestbound Right	0.08		0.08		0.08		0.08		
	Northwestbound LTR		0.62		0.63		0.63		0.65	
	Northeastbound LT	0.25	0.41	0.25	0.41	0.25	0.41	0.25	0.41	
	Northeastbound Right	0.24	0.45	0.24	0.45	0.24	0.45	0.24	0.45	
	Southwestbound LTR	0.15	0.33	0.15	0.33	0.15	0.33	0.15	0.33	

Table 6: 50th & 95th Percentile Queuing Comparison (in feet)

	Intersection and Lane Group	Storage Length (ft)	Existing (2021)				Background (2024)			Future with Existing Access (2024) (w/ Existing Access Scenario)				Future with Proposed Access (2024) (University Dr Restricted During Peak Hours)				
				Peak		Peak		Peak		Peak		Peak		Peak		Peak		Peak
			50th	95th	50th	95th	50th	95th	50th	95th	50th	95th	50th	95th	50th	95th	50th	95th
1.	Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW																	
	Southeastbound Thru	310	237	299	138	176	242	303	140	177	242	305	141	178	242	305	141	178
	Southeastbound Right	310	2	6	1	4	2	6	1	4	2	6	1	4	2	6	1	4
	Northwestbound Thru	170	18	24	71	84	17	24	72	84	18	24	72	84	17	22	71	83
	Southwestbound Thru	540	106	179	95	#175	106	179	95	#175	106	179	95	#175	106	179	95	#175
2.	University Ave & Wesley Cir NW																	
	Eastbound TR	510		0		0		0		0		0		0		0		0
	Northbound Right	330		3		4		3		4		3		4		3		2
3.	Massachusetts Ave & Wesley Cir NW																	
	Northbound (Eastbound) LTR	50		16		48		16		49		18		58		12		27
	Southeastbound Thru	170		0		0		0		0		0		0		0		0
	Northwestbound TR	160		0		0		0		0		0		0		0		0
4.	University Ave & Sedgwick St/WTS Dwy NW																	
	Eastbound LR	340		0		1		0		1		0		1		0		1
	Westbound LTR	100		0		2		0		2		1		2		0		0
	Northbound LT	320		0		0		0		0		0		0		0		0
	Southbound TR	320		0		0		0		0		0		0		0		0
5.	Massachusetts Ave & 45th St NW																	
	Southeastbound LT	200	18	3	6	0	18	4	6	0	18	3	7	0	18	4	7	0
	Northwestbound TR	200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Southwestbound LR	380	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.	Massachusetts Ave & WTS Dwy NW			-	-	-		-	-	-		-	-	-		-	-	
	Northbound Right	290		2		64		2		64		3		106		5		191
	Southeastbound Thru	200		0				0				0				0		
	Southeastbound TR	200		0		0		0		0		0		0		0		0
	Northwestbound LT	80		3		44		3		44		4		78		4		78
	Northwestbound Thru	80				0				0				0				0
7.	Massachusetts Ave & Glover Gate/Katzen Dwy NW																	_
	Southeastbound LTR	420	286	394	210	242	295	400	210	242	298	401	213	245	303	404	219	251
	Northwestbound LT	480	250	370			253	376			255	380			262	389		
	Northwestbound Right	480	0	10			0	10			0	10			0	10		
	Northwestbound LTR	480			230	291			233	295			237	300			247	312
	Northeastbound LT	100	21	52	52	102	21	52	52	102	21	52	52	102	21	52	52	102
	Northeastbound Right	100	0	12	0	52	0	12	0	52	0	12	0	52	0	12	0	52
	Southwestbound LTR	40	17	46	28	74	17	46	28	74	17	46	28	74	17	46	28	74

Transit Facilities

This chapter discusses the existing and proposed transit facilities near the site and evaluates the overall transit impacts of the site.

This chapter concludes that:

- The project site is well-served by existing transit;
- The project site is approximately 1.1 miles from the Tenleytown-AU Metro station;
- The project site is served by two (2) Metrobus routes and three (3) AU shuttle routes; and
- The project is expected to generate a manageable amount of transit trips that existing transit service is capable of handling.

Existing Transit Service

The study area is served by Metrorail and the Metrobus and American University (AU) shuttle systems. Combined, these transit services provide local and regional transit connections and link the site with residential, employment, commercial, and cultural destinations throughout the region. Figure 23 identifies the transit routes, stations, and stops in the study area.

The site is located 1.1 miles from the Tenleytown-AU Metro station on the Red Line, which travels between the Glenmont and Shady Grove stations by way of downtown Washington, DC.

The site is also served by three (3) AU shuttle routes, which WTS students can ride for free, and two (2) Metrobus routes. These bus routes connect the site to many areas of the region, as well as several Metro stations. Table 7 shows a summary of the bus route information for the routes that serve the site, including service hours, headway, and distance to the nearest bus stop.

Table 8 shows WMATA's recommended amenities for each type of bus stop. Table 9 shows a detailed inventory of the amenities appearing at each bus stop within the transit study area.

Proposed Transit Service

There are no known planned or proposed transit improvements in the project study area.

Site-Generated Transit Impacts

The proposed development is projected to generate 39 transit trips (17 inbound, 22 outbound) during the AM peak hour and 90 transit trips (45 inbound, 45 outbound) during the PM peak hour.

It is expected that existing transit service can accommodate these new site-generated trips.

Table 7: Local Bus Route Information

Route	Route Name	Service H	lours at Stop Close	est to Site	Headway	Walking
Number	Route Name	Weekdays	Saturdays	Sundays	(minutes)	Distance to Nearest Stop
M4	Nebraska Avenue Line	6:14am-9:14pm	-	-	11 - 36	0.3 mi (6 min)
N2,4,6	Massachusetts Avenue Line	5:44am-12:07am	5:40am-11:59pm	6:22am-11:14pm	4 - 45	0.1 mi (2 min)
-	AU Shuttle Blue Route	6:00am-12:15am	7:00am-12:15am	8:00am-12:15am	15 - 30	0.2 mi (4 min)
-	AU Shuttle Green Route	7:55am-9:40pm	-	-	85 - 97	0.3 mi (6 min)
-	AU Shuttle Red Express Route	7:00am-11:05pm	8:45am-4:30pm	-	15 - 30	0.2 mi (5 min)

Table 8: WMATA Recommended Bus Stop Amenities

Amonitor	Basic	Enhanced	Transit	
Amenity	< 50 daily boardings	≥ 50 daily boardings	Stop	Center Stop
Bus stop flag	•	•	•	•
Route map and schedule	•	•	•	•
5' x 8' landing pad	•	•	•	•
40'/60' x 8' landing pad			•	•
4' sidewalk	•	•	•	•
Bench		•	•	•
Shelter		•	•	•
Lighting (on shelter or within 30' if overhead)	Recommended for stops evening		•	•
Dynamic information signage	C	Contingent on presence of s	helter	
Trash and recycling receptacles	Recommende	d where surrounding uses n	nay generate tra	sh

Source: 2019 WMATA Bus Stop Amenity Reference Guide

Table 9: Bus Stop Inventory

			Amenities								
Location	Stop ID	Routes Served	Bus stop flag	Route map & sched- ule	Land -ing pad	Side- walk	Bench	Shel -ter	Dy- namic info sign	Light -ing	Trasi Recp
Massachusetts Ave & Fordham Rd (EB)	1002411	N4, N6	•	•	•	•	•	•		•	•
Massachusetts Ave & 48th St (WB)	1002407	N4, N6	•		•	•					•
Massachusetts Ave & Van Ness St (EB)	1002388	N4, N6	•	•	•	•				•	•
Massachusetts Ave & Van Ness St (WB)	1002387	N4, N6	•	•	•	•				•	
Massachusetts Ave & 46th St (WB)	1002341	N4, N6	•	•		•				•	
Massachusetts Ave & Filden St (EB)	1002339	N4, N6	•		•	•				•	
Massachusetts Ave & 45th St (EB)	1002310	N4, N6	•	•	•	•	•	•		•	•
Massachusetts Ave & 45th St (WB)	1002323	N4, N6	•	•	•	•				•	•
Massachusetts Ave & Nard Cir (WB) / Katzen Arts Center	1002283 / 114	N4, N6 / Red Express, Green	•	•	•	•				•	•
Massachusetts Ave & Nard Cir (EB) / Massachusetts Ave NW	1002275 / 115	N4, N6 / Red Express, Green	•	•	•	•	•	•		•	
Nebraska Ave & Ward Cir SB) / <i>Kerwin Hall</i>	1003092 / 109	M4, N2 / Blue, Green	•	•	•	•				•	
Nebraska Ave & N Drwy Amer Univ (NB) / East Campus	1002227 / 112	M4, N2, N6 / Green	•	•		•	•	•		•	
New Mexico Ave & Nebraska Ave (EB)	1002205	N2, N6	•	•		•				•	•
New Mexico Ave & Nebraska Ave (WB)	1002201	N2	•	•	•	•				•	•
Nebraska Ave & New Mexico Ave (SB)	1002204	M4	•		•	•				•	
Nebraska Ave & New Mexico Ave (NB)	1002197	M4	•		•	•				•	
Massachusetts Ave & Westover PI (EB)	1002229	N4, N6	•	•	•	•				•	
Massachusetts Ave & Vard Cir (WB)	1002258	N4, N6	•	•	•	•					•
Nebraska Ave & Ward Cir SB) / Nebraska Hall - nbound	1003710 / 108	M4, N2 / Red Express, Blue	•	•	•	•				•	
Nebraska Ave & Ward Cir NB) / Nebraska Hall - Dutbound	1002284 / 102	M4, N2 / Red Express, Blue	•	•	•	•	•	•		•	•
Nebraska Ave & #3700 SB)	1002292	M4, N2	•	•	•	•				•	
Nebraska Ave & Naval Sec Ctr (NB)	1002304	M4, N2	•	•	•	•	•	•		•	•
Spring Valley Building	111	Red Express, Green	•		•	•	•	•		•	•
Kogod	101	Blue			•	•	•	•		•	•
Letts Anderson	100	Blue, Green			•	•	•	•		•	•

AU Shuttle routes, stop locations, and stop ID's noted in italics.

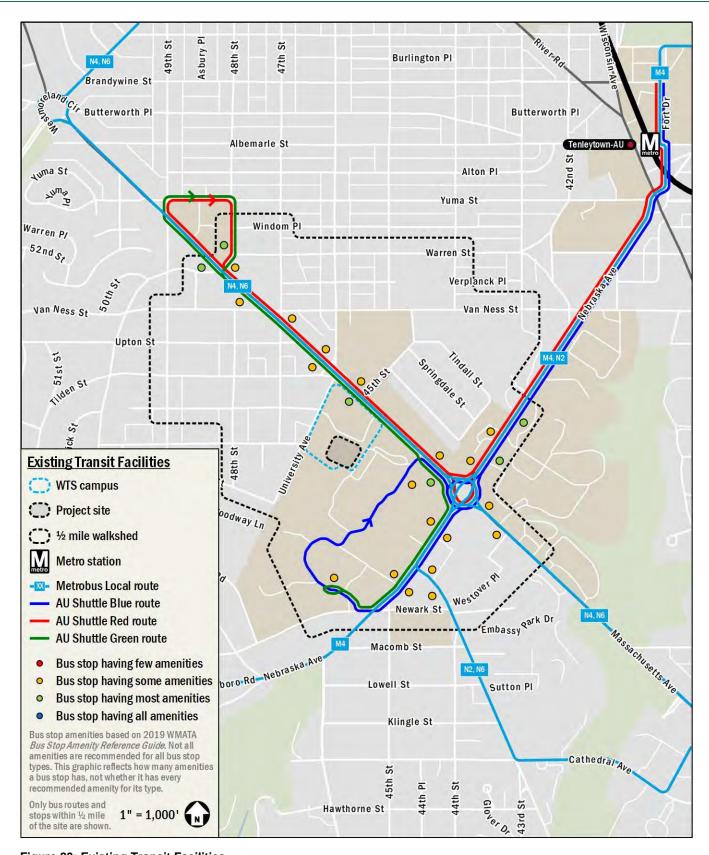


Figure 23: Existing Transit Facilities

Pedestrian Facilities

This chapter summarizes existing pedestrian access to the site and reviews the impacts of the site on the pedestrian network.

The following conclusions are reached within this chapter:

- Despite some incidences of missing sidewalks, curb ramps, and crosswalks on minor streets near the project site, there are generally adequate pedestrian facilities along primary walking routes between the site and major local destinations;
- The area surrounding the site is free of major barriers to pedestrian connectivity;
- The project is expected to generate pedestrian trips to and from nearby destinations, and the pedestrian facilities surrounding the project can accommodate these new trips; and
- While sidewalks are provided along the Massachusetts
 Avenue driveway, no sidewalks are provided along the
 University Avenue site driveway or along University
 Avenue between the driveway and Wesley Circle.

Pedestrian Study Area

Pedestrian facilities within a quarter-mile of the site were evaluated. There are several streets within the study area that do not have sidewalks, particularly in the residential areas immediately west and northeast of the site. There are also some sidewalks nearby that do not meet minimum width requirements, in addition to having missing or non-compliant crosswalks and curb ramps. Despite these shortcomings, there are generally adequate pedestrian facilities along Massachusetts Avenue NW, which is a primary walking route to major local destinations.

Figure 24 shows suggested pedestrian pathways to nearby destinations, including walking time and distances.

Existing Pedestrian Infrastructure

A detailed inventory of the existing pedestrian facilities within the study area is shown on Figure 25. Sidewalks, crosswalks, and curb ramps are evaluated based on the guidelines set forth by DDOT's *Design and Engineering Manual (2019)* in addition to Americans with Disabilities Act (ADA) standards. These facilities are shown within their respective land use types based on DC's Zoning Regulations of 2016, which determine which of DDOT's sidewalk width requirements apply. These sidewalk width requirements are shown in Table 10.

Table 10: DDOT Sidewalk Width Requirements

Street Type	Curb Walk	Tree/Fur -nishing Zone	Sidewalk Unobstructed Clear Width	Total Minimum Sidewalk Width
Low to Moderate Density Residential	None	4 - 6 feet	6 feet	10 feet
High Density Residential or Light Commercial	1 foot	4 - 8 feet	8 feet	13 feet
Central DC and Commercial Areas	1 - 2 feet	4 - 10 feet	10 feet	16 feet

Source: DDOT Design and Engineering Manual

Sidewalks

As shown on Figure 25, the pedestrian study area includes streets within the "Low to Moderate Density Residential" and "High Density Residential or Light Commercial" categories of sidewalk width requirements. There are several streets within the study area that do not have sidewalks, particularly in the residential areas immediately west and northeast of the site. There are also some sidewalks nearby that do not meet minimum width requirements. In some cases, as along the south side of Massachusetts Avenue NW, the sidewalk meets the width requirement of a lower intensity land use, but not its applicable land use. In other cases, as on the American University campus, the sidewalk is not accompanied by a tree/furnishing zone.

Curb ramps

ADA standards require that all curb ramps be provided wherever an accessible route crosses a curb and must have a detectable warning. Additionally, curb ramps shared between two crosswalks are not desired but where they are present, a 48" clear space is required outside active vehicle traffic lanes and within marked crossings. As shown on Figure 25, there are some intersections near the project site that are missing a curb ramp and/or crosswalk on one or more leg.

Crosswalks

DDOT's *Design and Engineering Manual (2019)* requires crosswalks at all intersections or mid-block locations controlled by vehicular and/or pedestrian traffic signals or all-way stop signs. Additionally, high-visibility crosswalks are required at all

uncontrolled crosswalks and all crosswalks (including signalized or stop-controlled crosswalks) leading to a block with a school, within a designated school zone area, along a designated school walking route, on blocks adjacent to a Metro station, in areas with moderate to high pedestrian volumes, and in locations with high frequencies of conflicts with pedestrians and turning vehicles.

As shown on Figure 25, there are several instances near the site where crosswalks are not present, or a crosswalk is present but not a high-visibility type at a location where it is required.

Proposed Pedestrian Infrastructure

The Wesley Campus Plan will provide a new sidewalk and streetscape along the buildings northern side to connect to provide links to adjacent pedestrian infrastructure within the campus.

The Applicant is also coordinating with American University (AU) on options to maintain the existing pedestrian connection between the two campuses, located on the east side of the project site.

Site-Generated Pedestrian Impacts

The proposed development is projected to generate 19 pedestrian trips (8 inbound, 11 outbound) during the AM peak hour and 45 pedestrian trips (23 inbound, 22 outbound) during the PM peak hour.

The origins and destinations of these pedestrian trips are likely to be:

- Retail and restaurant locations; and
- Neighborhood destinations such as libraries and parks.

In addition to these trips, the transit trips generated by the site will also generate pedestrian demand between the site and nearby bus stops. It is expected that existing pedestrian facilities can accommodate these new site-generated trips.

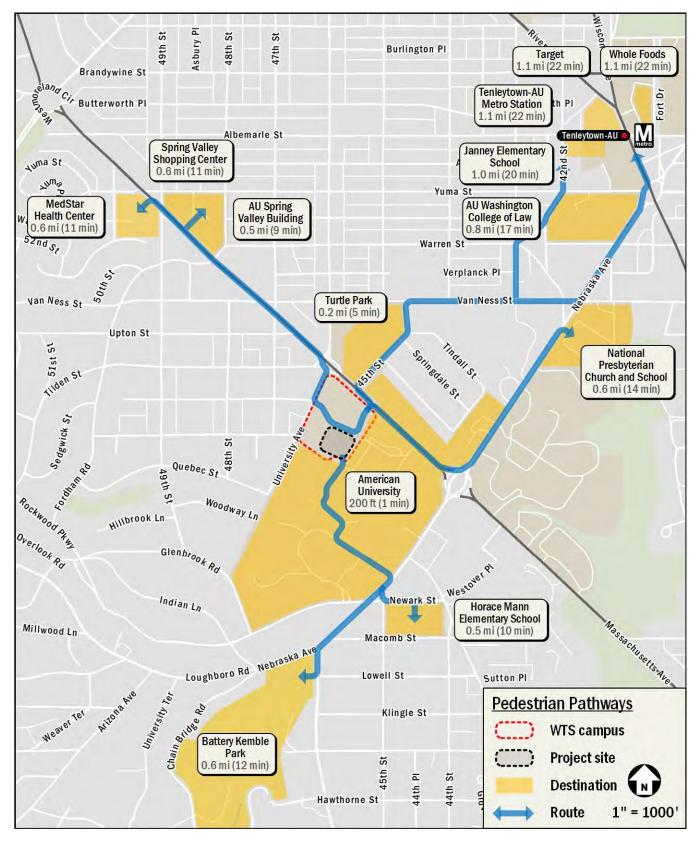


Figure 24: Existing Pedestrian Pathways

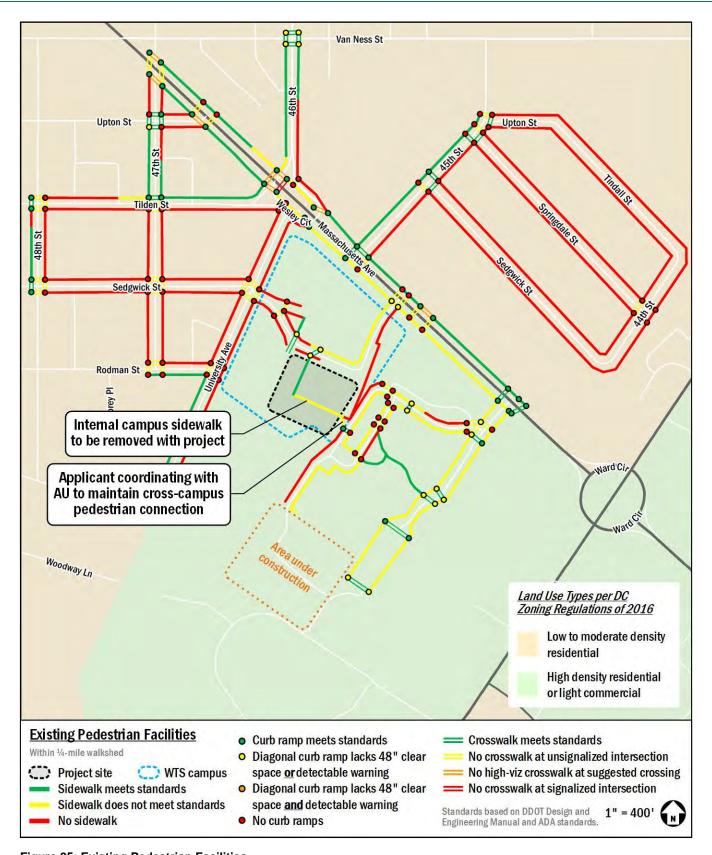


Figure 25: Existing Pedestrian Facilities

Bicycle Facilities

This chapter summarizes existing bicycle access to the site and reviews the impacts of the site on the bicycle network.

The following conclusions are reached within this chapter:

- The site is proximate to several on-street bicycle facilities;
- Several planned and proposed bicycle projects will improve bicycle access to the site;
- The project is expected to generate a manageable number of bicycle trips; therefore, site-generated bicycle trips can be accommodated on existing infrastructure; and
- The project will include short- and long-term bicycle parking that meets zoning requirements.

Existing Bicycle Facilities

The site is located approximately 0.5 miles northwest of the bike lanes on New Mexico Avenue NW, 0.7 miles southwest of the bike lanes on Van Ness Street NW, and 0.5 miles southwest of the on-street signed bike routes on 42nd and 43rd Streets NW. Using these facilities, bicyclists have access to several off-street bike facilities, such as the Rock Creek Trail and the Klingle Valley Trail.

Existing bicycle facilities are shown on Figure 26.

Capital Bikeshare

In addition to personal bicycles, the Capital Bikeshare program provides an additional cycling options for residents, employees, and visitors of the proposed project. The program has placed over 500 bikeshare stations across the Washington, DC metropolitan area with over 4,500 bicycles in the fleet. The following Capital Bikeshare stations are within a quarter-mile of the site:

- A 14-dock station at Ward Circle / American University,
 0.2 miles east of the site; and
- A 19-dock station at American University East Campus,
 0.4 miles southeast of the site.

Figure 26 illustrates these and other Capital Bikeshare locations in the area.

Shared Mobility

Shared mobility service in the District is provided by eight (8) electric-assist scooter (e-scooter) and electric-assist bicycle (e-

bike) companies including Bird, Lime, Lyft, Razor, Skip, Spin, Helbiz, and Jump. These Personal Mobility Devices (PMDs) are provided by private companies that give registered users access to a variety of e-scooter and e-bike options. These devices are used through each company-specific mobile phone application. Many PMDs do not have designated stations where pick-up/drop-off activities occur like with Capital Bikeshare; instead, many PMDs are parked in public space, most commonly in the "furniture zone" (the portion of sidewalk between where people walk and the curb, often where other street signs, street furniture, trees, parking meters, etc. are located). Currently, PMD pilot/demonstration programs are underway in Arlington County, the District, Fairfax County, the City of Alexandria, and Montgomery County.

Planned Bicycle Facilities

There are several bicycle improvements near the site that are planned and scheduled to open in the near future. These are shown on Figure 27.

DDOT Bikeways Expansion

DDOT's "20 by 22" initiative is a plan to build 20 miles of new protected bike lanes in the District by 2022. The plan identifies the following street segments in the project site area to receive protected bike lanes:

- Massachusetts Avenue NW from the Maryland border to Ward Circle;
- Nebraska Avenue NW from Ward Circle to Warren Street; and
- New Mexico Avenue NW from Nebraska Avenue to Reservoir Road.

Proposed Bicycle Facilities

Several bicycle improvements are proposed near the site but are not yet funded or planned. These are shown on Figure 27.

MoveDC Bicycle Element

The bicycle element of *MoveDC*, the District's multimodal longrange transportation plan, includes the following bicycle improvements near the development that are proposed but not yet funded or planned:

 Bicycle improvements along Massachusetts Avenue NW, Nebraska Avenue NW, Arizona Avenue NW,

Loughboro Road NW, 49th Street NW, Albermarle Street NW, Glenbrook Road NW, and Rockwood Parkway NW.

Capital Bikeshare Development Plan

DDOT's Capital Bikeshare Development Plan was originally released in 2016 to guide the continued growth of Capital Bikeshare in the District of Columbia. The most recent update of the Development Plan was released in 2020 and includes the following:

- A planned station at Turtle Park, 0.2 miles from the site:
- A proposed station at Quebec Street and 48th Street NW, 0.4 miles from the site; and
- A proposed station at 47th Street and Warren Street NW, 0.5 miles from the site.

Site-Generated Bicycle Impacts

This section summarizes the impacts of the project on bicycling conditions surrounding the project site.

On-site Bicycle Infrastructure

The project will meet zoning requirements by providing at least 62 long-term bicycle parking spaces inside the building and at least 12 short-term bicycle parking spaces.

Bicycle Trip Generation

The proposed project is projected to generate four (4) bicycle trips (2 inbound, 2 outbound) during the AM peak hour and 10 bicycle trip (4 inbound, 6 outbound) during the PM peak hour.

It is expected that existing bicycle facilities can accommodate these new site-generated trips.

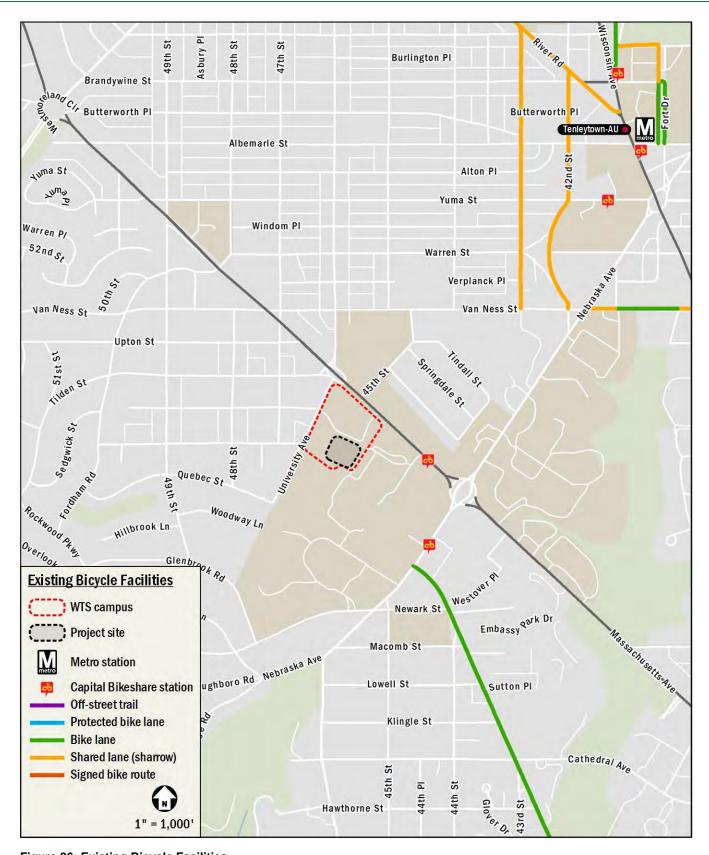


Figure 26: Existing Bicycle Facilities

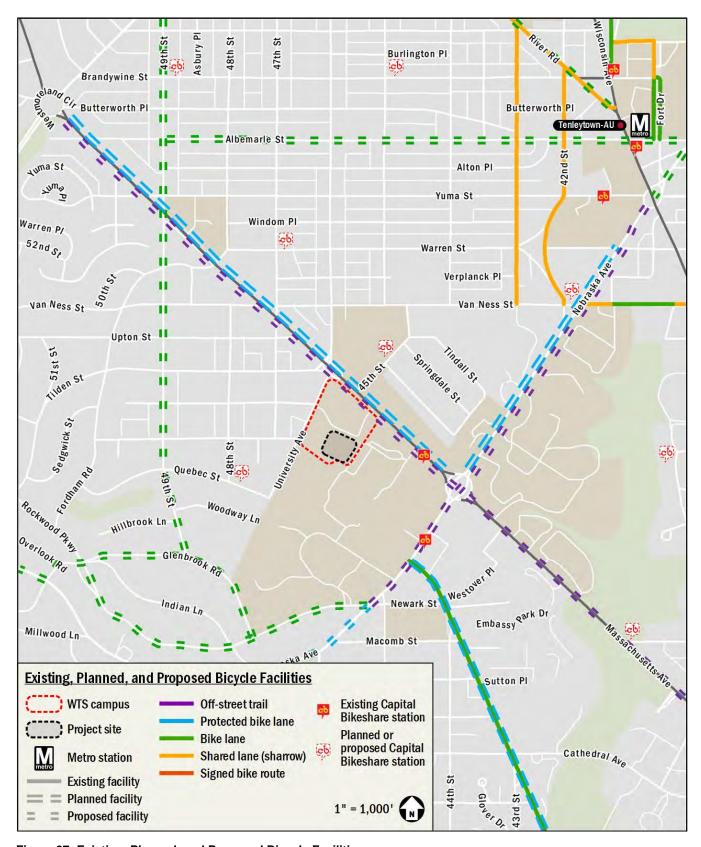


Figure 27: Existing, Planned, and Proposed Bicycle Facilities

Safety Analysis

This chapter qualitatively reviews any vehicle, pedestrian, or bicycle conflicts at the study area intersections or street links within the study area. This review notes any intersections within the study area that have been identified by DDOT as high crash locations and makes recommendations to improve safety conditions. These recommendations are presented for DDOT's consideration, not for the Applicant to complete as part of the proposed project. It should be noted that a new pedestrian HAWK signal has recently been installed to provide signalized pedestrian crossing of Massachusetts Avenue at 45th Street.

Summary of Safety Analysis

A safety analysis was performed to determine if there are any intersections that pose obvious conflicts with vehicles, pedestrians, or bicyclists. This was determined based on data included in DDOT's most recent *Traffic Safety Statistics Report* (2016-2018), *Vision Zero Action Plan*, and Open Data DC Vision Zero Safety data.

Based on available data, no intersections in the study area were identified by DDOT as hazardous/high crash intersections.

However, a qualitative review of the crash data available through the DDOT-maintained and publicly-available "Crashes in DC" database was performed to identify study intersections in which conditions for vehicles, pedestrians, and bicyclists can be improved.

Based on a review of facilities in the area and crash data, two (2) intersections were identified for further evaluation. The following section details the potential conflicts at the identified study area intersections.

Potential Impacts

This section reviews the intersections identified to pose potential conflicts to vehicles, pedestrians, or bicyclists.

Massachusetts Avenue and Wesley Circle NW

While this intersection was not identified in DDOT's *Traffic Safety Statistics Report* (2016-2018) as having comparatively high rates of crash frequency, the DDOT-maintained "Crashes in DC" database shows a moderate number of crashes at this intersection since 2016, as shown on Figure 28, including one (1) pedestrian-involved crash, as shown on Figure 29.

This intersection operates as a four-legged, unsignalized intersection. Crosswalks are currently provided at every location

where there is a traffic signal and/or stop sign, which excludes the through lanes of Massachusetts Avenue NW. However, the crosswalks at this intersection are not high-visibility although they are in an area with moderate to high pedestrian volumes. Curb ramps that include detectable warnings per ADA standards are provided on every corner.

As shown in Figure 27, protected bike lanes are proposed along Massachusetts Avenue NW that would likely improve conditions for both bicyclists and pedestrians at this intersection. Protected bike lanes could improve conditions for bicyclists by providing physical separation from vehicular traffic, and could improve conditions for pedestrians by reducing the distance across vehicle lanes pedestrians needed to cross.

This report recommends that DDOT perform a safety audit at this intersection as part of its Traffic Safety Assessment program to further evaluate the extent of safety issues and determine if any action is needed.

Massachusetts Avenue and Glover Gate/Katzen Driveway NW

While this intersection was not identified in DDOT's *Traffic Safety Statistics Report* (2016-2018) as having comparatively high rates of crash frequency, the DDOT-maintained "Crashes in DC" database shows a moderate number of crashes at this intersection since 2016, as shown on Figure 28, including two (2) pedestrian-involved crashes and one (1) bicycle-involved crash, as shown on Figure 29 and Figure 30.

This intersection operates as a four-legged, signalized intersection. Crosswalks are currently provided at every leg of the intersection. Curb ramps that include detectable warnings per ADA standards are provided on every corner.

As shown in Figure 27, protected bike lanes are proposed along Massachusetts Avenue NW that would likely improve conditions for both bicyclists and pedestrians at this intersection. Protected bike lanes could improve conditions for bicyclists by providing physical separation from vehicular traffic, and could improve conditions for pedestrians by reducing the distance across vehicle lanes pedestrians needed to cross.

This report recommends that DDOT perform a safety audit at this intersection as part of its Traffic Safety Assessment program to further evaluate the extent of safety issues and determine if any action is needed.

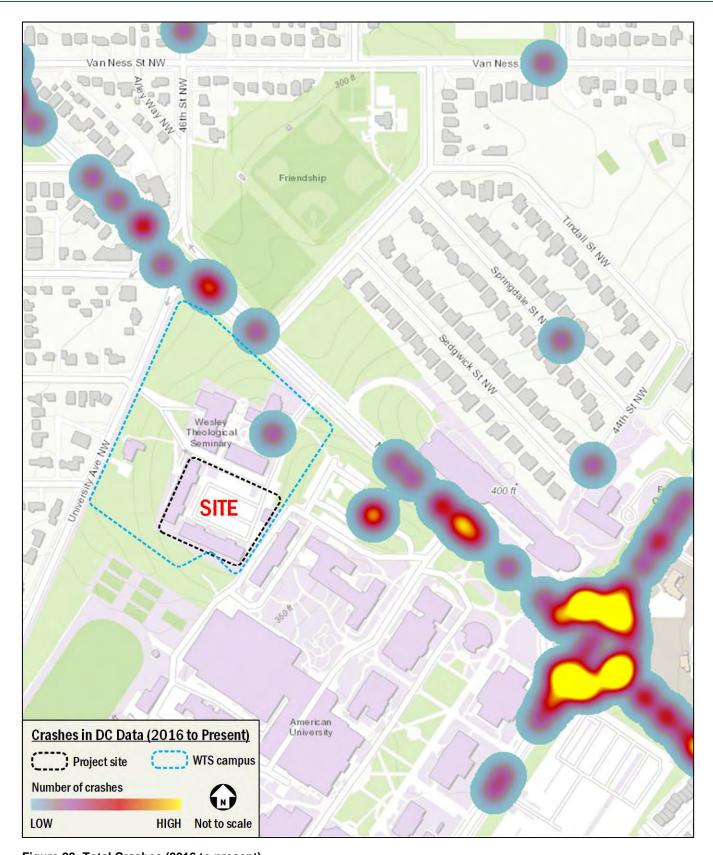


Figure 28: Total Crashes (2016 to present)

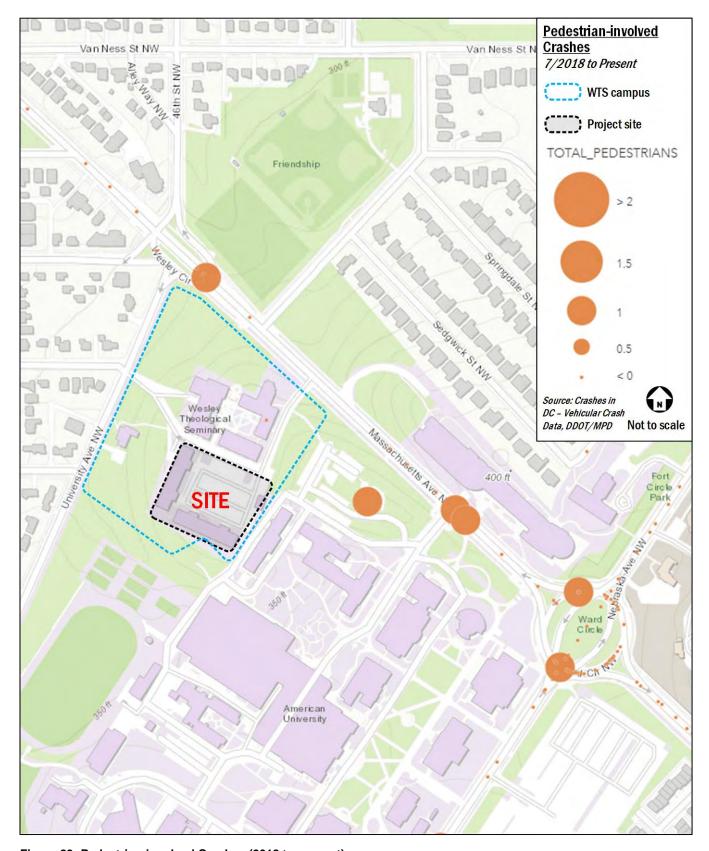


Figure 29: Pedestrian-involved Crashes (2018 to present)

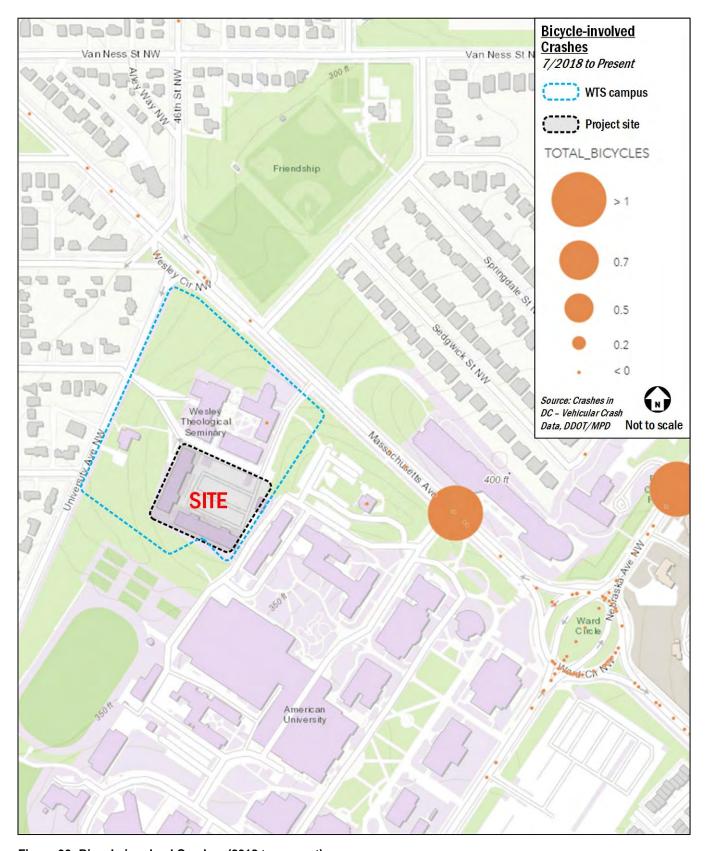


Figure 30: Bicycle-involved Crashes (2018 to present)

Summary and Conclusions

This report has evaluated whether the Wesley Campus Plan will generate a detrimental impact to the transportation network surrounding the site. This evaluation is based on a technical comparison of the Existing Conditions, Background Conditions, and Total Future Conditions. This report concludes that **the project will not have a detrimental impact** to the surrounding transportation network assuming the proposed site design elements are implemented.

Proposed Project

The development site location is within the WTS campus, which is generally bounded by University Avenue NW to the west, Massachusetts Avenue NW to the north, and the American University (AU) campus to the east and south. The portion of the site to be redeveloped is currently occupied by a surface parking lot and two (2) student housing and administration buildings.

The proposed project includes removing the surface parking lot and existing buildings, replacing them with a new student housing building containing approximately 215 dwelling units, 1,535 square feet of retail spaces, and 350 below-grade parking spaces.

The proposed student housing building will be for WTS and AU students and may also house immediate families, faculty and staff and building employees. The housing building will not otherwise serve the general public.

Multimodal Overview

Trip Generation

The Wesley Campus Plan is expected to generate new trips within the surrounding transportation network across all transportation modes during the morning and afternoon peak hours. However, with the implementation of a Transportation Demand Management (TDM) plan as part of the project, the resulting new trips generated by the project will not have a detrimental impact on the transportation network. The multimodal trip generation for the proposed project is as follows:

- AM Peak Hour: 14 vehicles/hour, 39 transit riders/hour, four (4) bicycle trips/hour, and 19 walking trips/hour.
- PM Peak Hour: 33 vehicles/hour, 90 transit riders/hour,
 10 bicycle trips/hour, and 45 walking trips/hour.

Transit

The site is located 1.1 miles from the Tenleytown-AU Metro station on the Red Line and is served by local bus routes.

The site is expected to generate a manageable amount of transit trips, and the existing service can accommodate these new trips.

Pedestrian

The site is surrounded by a generally adequate pedestrian network. Despite some incidences of missing sidewalks, curb ramps, and crosswalks on minor streets near the project site, there are generally adequate pedestrian facilities along primary walking routes between the site and major local destinations.

The site is expected to generate a manageable amount of pedestrian trips, and the existing pedestrian facilities can accommodate these new trips.

Bicycle

The site is proximate to several on-street bicycle facilities, including the bike lanes on New Mexico Avenue NW and Van Ness Street NW, and the on-street signed bike routes on 42nd and 43rd Streets NW. Using these facilities, bicyclists have access to several off-street bike facilities, such as the Rock Creek Trail and the Klingle Valley Trail.

Several planned and proposed bicycle projects will improve bicycle access to the site, including protected bike lanes on Massachusetts Avenue NW, Nebraska Avenue NW, and New Mexico Avenue NW.

The project will include long-term bicycle parking inside the building and short-term bicycle parking along the perimeter of the site that meets zoning requirements.

The site is expected to generate a manageable amount of bicycle trips, and the existing bicycle facilities can accommodate these new trips.

Vehicular

The site is accessible via Massachusetts Avenue NW, a principal arterial which connects the site to expressways within the District such as the Southeast Freeway (I-695), the Southwest Freeway (I-395), and the Anacostia Freeway (DC-295). These expressways connect with the Capital Beltway (I-495) and other regional Interstates.

To identify the project's impact on the transportation network, future conditions were analyzed with and without the project. Intersection analyses were performed to calculate the average delays and queues for vehicles at each of the study intersections. These average delays and queues were compared to the acceptable levels of delay and queue impacts set by DDOT standards to determine if the project will negatively impact the study area.

Further, future conditions with the proposed development were analyzed under the following two scenarios:

- <u>Existing Access:</u> University Avenue egress driveway remains open outbound site traffic during peak periods, consistent with existing conditions.
- <u>Proposed Access:</u> University Avenue egress driveway restricted during AM and PM peak periods, except for delivery vehicles that would still be permitted to use the driveway.

The analysis concluded that one (1) intersection would meet DDOT's delay-related threshold for mitigation under the Existing Access scenario and no intersections under Proposed Access scenario.

After exploring options for mitigating impacts at this intersection, this report recommends implementing a robust Transportation Demand Management (TDM) plan consistent with DDOT's Baseline Plan as a mitigation measure.

Safety Recommendations

A qualitative review of the crash data available through the DDOT-maintained and publicly-available "Crashes in DC" database was performed to identify study intersections, if any, in which conditions for vehicles, pedestrians, and bicyclists may be improved.

Based on a review of facilities in the area and relevant crash data, two (2) intersections were identified for further evaluation. Recommendations for these intersections, presented for DDOT's consideration and not for the Applicant to complete as part of the proposed project, are summarized below:

Massachusetts Avenue and Wesley Circle NW

Installation of the planned protected bike lanes along Massachusetts Avenue NW would improve conditions for bicyclists and pedestrians. Further, a safety audit should be performed as part of DDOT's Traffic Safety Assessment program.

Massachusetts Avenue and Glover Gate/Katzen Driveway NW

Installation of the planned protected bike lanes along Massachusetts Avenue NW would improve conditions for bicyclists and pedestrians. Further, a safety audit should be performed as part of DDOT's Traffic Safety Assessment program.

Transportation Demand Management (TDM) Plan

Per the DDOT CTR guidelines, the goal of implementing TDM measures is to reduce the number of single occupancy vehicles and vehicle ownership within the District. The promotion of various programs and existing infrastructure includes maximizing the use of transit, bicycle, and pedestrian facilities. DDOT has outlined expectations for TDM measures in the CTR guidelines, and this project is proposing to implement a TDM plan consistent with these guidelines based on the expected impact of the project, as discussed in the Project Design section of this report.

Summary

This report concludes that the Wesley Campus Plan will not have a detrimental impact on the surrounding transportation network assuming the proposed site design elements are implemented.

The project has several positive design elements that minimize potential transportation impacts, including but not limited to the following:

- The site's proximity to transit service and bicycle infrastructure;
- The site's location within a generally adequate pedestrian network along major walking routes;
- The site's loading facility design, which maintains loading activity within private property and provides loading circulation that ensures head-in/head-out truck movements are performed from the public roadway network:
- The inclusion of secure long-term bicycle parking spaces that meet zoning requirements;
- The inclusion of short-term bicycle parking spaces within the site that meet zoning requirements; and
- A TDM plan that reduces the demand of singleoccupancy, private vehicles during peak period travel times and shifts single-occupancy vehicular demand to off-peak periods.

Transportation Technical Attachments

Wesley Campus Plan

Washington, DC

April 29, 2022

CONTENTS

(Note: Click on heading to navigate directly to each section of the Technical Attachments)

- A. Truck Maneuvering Diagrams
- B. Detailed Trip Generation and Mode Split Information
- C. Scoping Information
- D. Vehicle Level of Service Definitions
- E. 2012 Turning Movement Counts
- F. February 2020 Turning Movement Counts
- G. 2021 Turning Movement Counts
- H. Vehicular Capacity Analysis Worksheets 2021 Existing Conditions
- I. Vehicular Capacity Analysis Worksheets 2024 Background Conditions
- J. Vehicular Capacity Analysis Worksheets 2024 Total Future Conditions with Existing Access (Alternative A)
- K. Vehicular Capacity Analysis Worksheets 2024 Total Future Conditions with Proposed Access (Alternative B)

A. Truck Maneuvering Diagrams

Bohler DC November 19, 2021

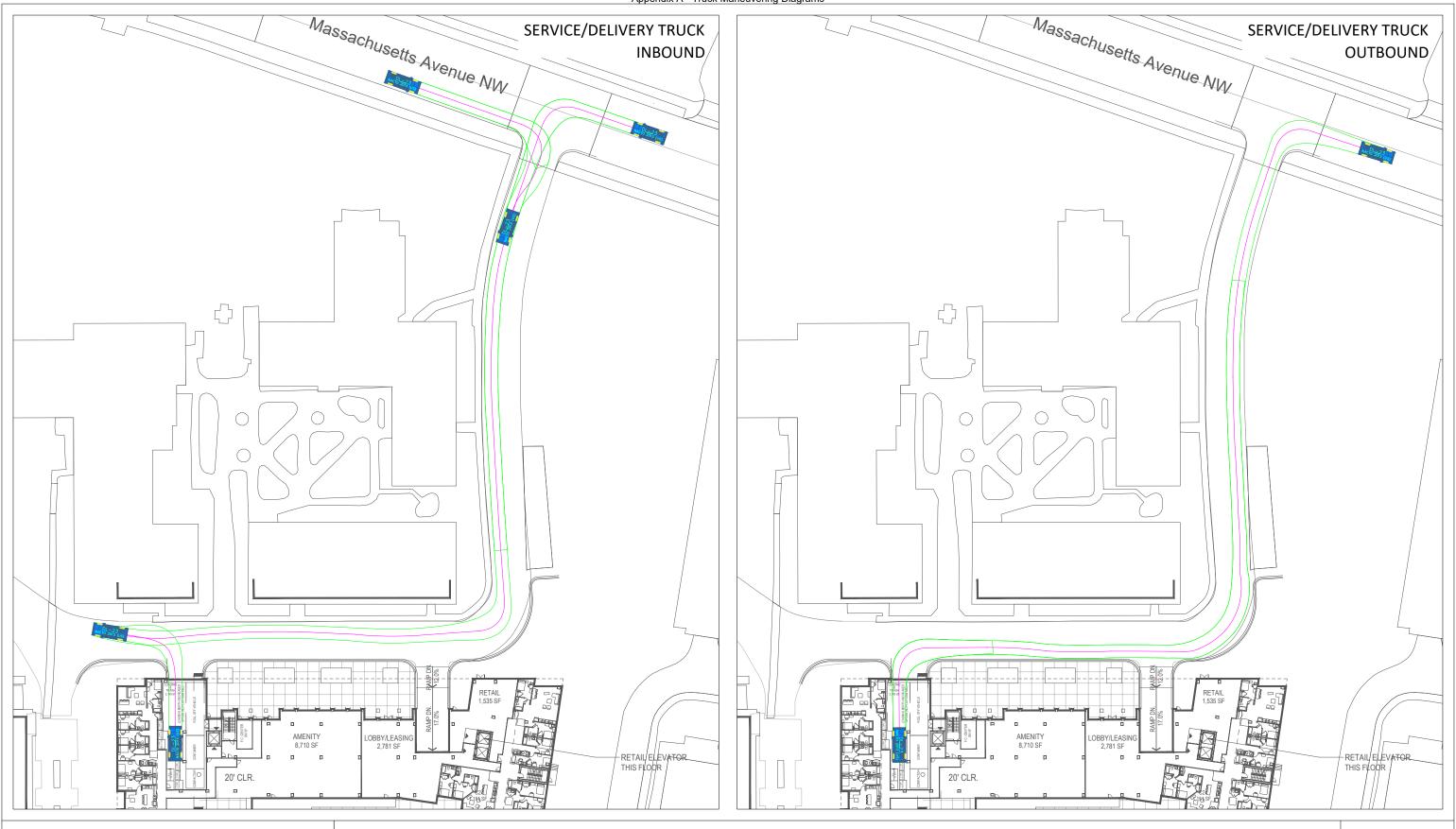
Sheet 1 of 7

NW, Washington, DC

ZONINGSCALENISS 1060'

P:\2997-001 Landmark Housing at Wesley Seminary (7301-2811)\CAD\Landmark Housing at WTS AT 11.18.2021.dwg - 11/19/2021 9:55 AM District of Columbia

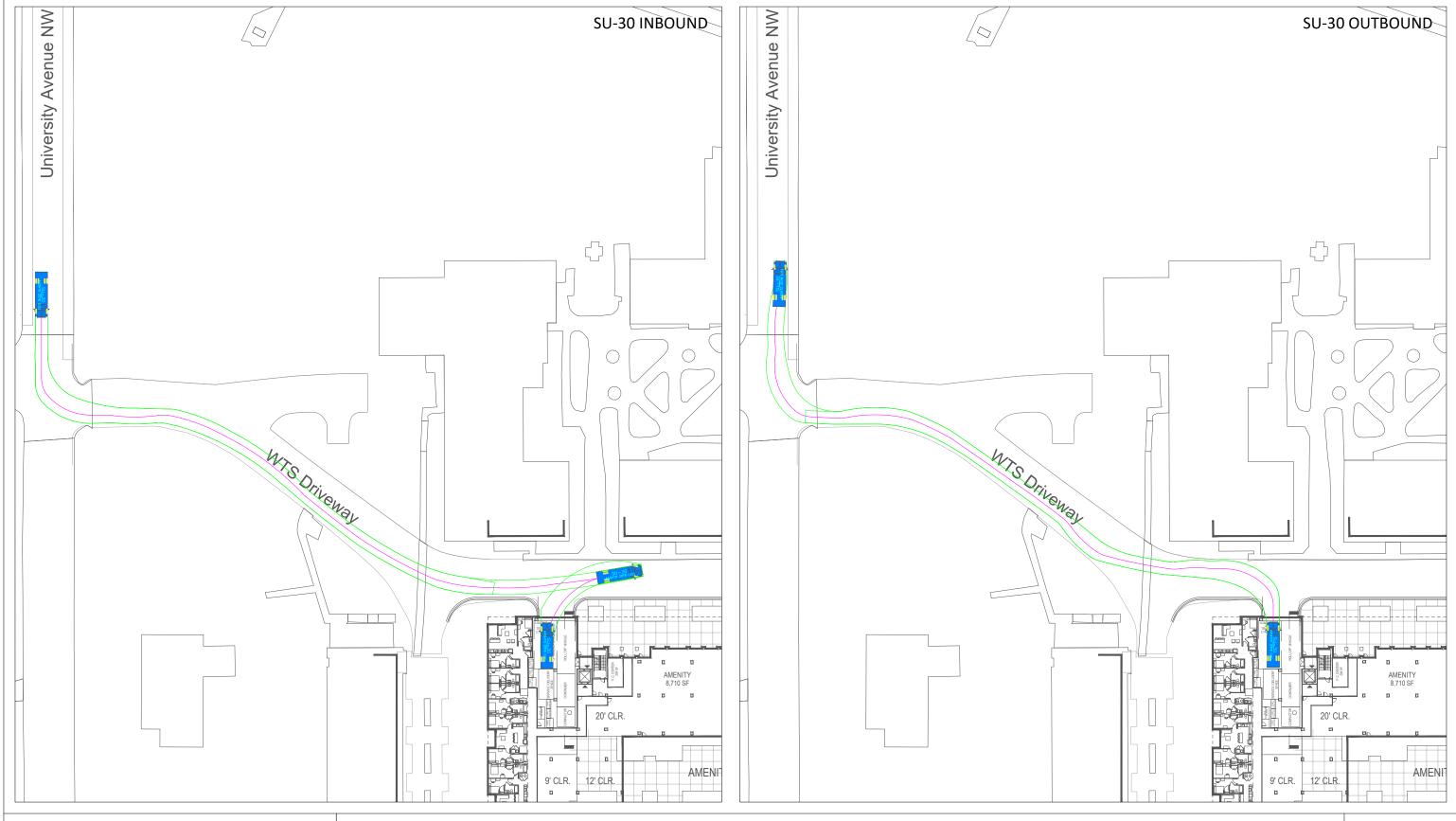
CASE NO.22-13
EXHIBIT NO.15A2



Bohler DC November 19, 2021 Sheet 2 of 7

NW, Washington, DC

P:\2997-001 Landmark Housing at Wesley Seminary (7301-2811)\CAD\Landmark Housing at WTS AT 11.18.2021.dwg - 11/19/2021 9:55 AM



Bohler DC November 19, 2021 Sheet 3 of 7

NW, Washington, DC

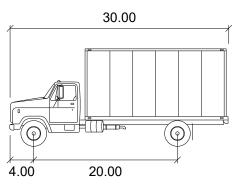
Bohler DC November 19, 2021

Sheet 4 of 7

NW, Washington, DC

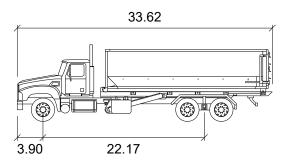
Bohler DC November 19, 2021 Sheet 5 of 7

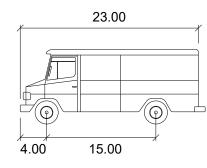
NW, Washington, DC


Bohler DC November 19, 2021

Sheet 6 of 7

NW, Washington, DC


P:\2997-001 Landmark Housing at Wesley Seminary (7301-2811)\CAD\Landmark Housing at WTS AT 11.18.2021.dwg - 11/19/2021 9:55 AM


SU-30

Width : 8.00
Track : 8.00
Lock to Lock Time : 6.0
Steering Angle : 31.8

Accurate 75K Roll-Off

Width : 8.17
Track : 8.02
Lock to Lock Time : 6.0
Steering Angle : 32.7

DL-23

 Width
 : 8.50

 Track
 : 8.50

 Lock to Lock Time
 : 6.0

 Steering Angle
 : 40.4

Bohler DC November 19, 2021 Sheet 7 of 7

NW, Washington, DC

N.T.S.

B. Detailed Trip Generation and Mode Split Information

Mode Split Assumptions

Residential Component

Pertinent Mode Split data from other sources:

				Мо	ode			
Information Source	SOV	Carpool	Rideshare	Transit	Bike	Walk	Telecommute	Other
CTPP - TAZ Residents (TAZ 10094)	17%	8%		22%	2%	30%	18%	3%
State of the Commute 2016 (of District residents)	35%	4%		42%	16%		3%	
AU 2021 Campus Plan - student commute to campus	14%	2%	4%	50%	28	28%		2%
WMATA Ridership Survey Table 9 (average for Friendship Heights Station Area)	55	55%		35%	10%			

Mode Split assumed in TIS:

_	Mode						
Land Use	Drive	Transit	Bike	Walk	Telecommute/Other		
Residential Mode Split	20%	50%	5%	25%			

Notes: Mode split based primarily on census data and mode split for AU students commuting to campus, adjusted for the project site being located on campus.

Retail Component

Pertinent Mode Split data from other sources:

tilicit Woode Split data Holli otilci 30dices	_							
				M	ode			
Information Source	SOV	Carpool	Rideshare	Transit	Bike	Walk	Telecommute	Other
CTPP - TAZ Workers	40%	7%		22%	2%	22%	6%	1%
(TAZ 10094)	40%	770		22%	2%	22%	0%	170
State of the Commute 2019	32%	6%		53%	7	%		
(of DC Workers)	32%	0%		55%	'	70		
WMATA Ridership Survey Table 15		36%		37%	2.	70/		
(Average Among Retail Sites)		30%		3/%	27%			

Mode Split assumed in TIS:

	Mode						
Land Use	Drive	Transit	Bike	Walk	Telecommute/Other		
Retail	50%	25%	5%	20%			

Residential Trip Generation

600 net new bedrooms

Step 1: Base trip generation using ITEs' *Trip Generation*

Land Use	Land Use Code	Code Quantity (x) AM Peak Hour			eak Hour		Daily		
Land Ose	Land Ose Code	Qualitity (x)	In	Out	Total	In	Out	Total	Total
Apartments	225	600 br	27 veh/hr	38 veh/hr	65 veh/hr	74 veh/hr	73 veh/hr	147 veh/hr	1872 veh
	Ca	lculation Details:	41%	59%	=0.1X+5.31	50%	50%	=0.24X+2.9	=3.03X+54.26

Step 2: Convert to people per hour, before applying mode splits

Land Use	People/Car		AM P	eak Hour		PM Peak Hour			
Land Ose	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total	
Apartments	1.18 ppl/veh	32 ppl/hr	45 ppl/hr	77 ppl/hr	87 ppl/hr	86 ppl/hr	173 ppl/hr	2209 ppl	

Step 3: Split between modes, per assumed Mode Splits

Land Use	Mode	Split		AM P	eak Hour		PM Pea	k Hour	Daily
Land Ose	Mode	Split	In	Out	Total	In	Out	Total	Total
Apartments	Auto	20%	6 ppl/hr	9 ppl/hr	15 ppl/hr	17 ppl/hr	18 ppl/hr	35 ppl/hr	442 ppl
Apartments	Transit	50%	16 ppl/hr	23 ppl/hr	39 ppl/hr	44 ppl/hr	43 ppl/hr	87 ppl/hr	1105 ppl
Apartments	Bike	5%	2 ppl/hr	2 ppl/hr	4 ppl/hr	4 ppl/hr	5 ppl/hr	9 ppl/hr	110 ppl
Apartments	Walk	25%	8 ppl/hr	11 ppl/hr	19 ppl/hr	22 ppl/hr	21 ppl/hr	43 ppl/hr	552 ppl

Step 4: Convert auto trips back to vehicles/hour

Land Use	People/Car		AM P	eak Hour		k Hour	Daily	
Land Ose	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total
Apartments	1.18 ppl/veh	5 veh/hr	8 veh/hr	13 veh/hr	14 veh/hr	16 veh/hr	30 veh/hr	375 veh

Trip Gen Summary for Residential

Mode	AM Peak Hour				k Hour	Daily	
Mode	In	Out	Total	In	Out	Total	Total
Auto	5 veh/hr	8 veh/hr	13 veh/hr	14 veh/hr	16 veh/hr	30 veh/hr	375 veh
Transit	16 ppl/hr	23 ppl/hr	39 ppl/hr	44 ppl/hr	43 ppl/hr	87 ppl/hr	1105 ppl
Bike	2 ppl/hr	2 ppl/hr	4 ppl/hr	4 ppl/hr	5 ppl/hr	9 ppl/hr	110 ppl
Walk	8 ppl/hr	11 ppl/hr	19 ppl/hr	22 ppl/hr	21 ppl/hr	43 ppl/hr	552 ppl

Retail Trip Generation

1,535 sf

Step 1: Base trip generation using ITEs' Trip Generation

Land Use	Land Use Code	Quantity (x)	AM Peak Hour				Daily		
Land Ose	Land Ose Code	Qualitity (x)	In	Out	Total	In	Out	Total	Total
Retail	820	1,535 sf	1 veh/hr	0 veh/hr	1 veh/hr	3 veh/hr	3 veh/hr	6 veh/hr	58 veh
	Ca	lculation Details:	62%	38%	=0.94(X/1000)	48%	52%	=3.81(X/1000)	=37.75(X/1000)

Step 2: Convert to people per hour, before applying mode splits

Land Use	People/Car		AM Peak Hour PM Peak Hour In Out Total In Out Total					Daily
Land Use	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total
Retail	1.82 ppl/veh	2 ppl/hr	0 ppl/hr	2 ppl/hr	5 ppl/hr	6 ppl/hr	11 ppl/hr	106 ppl

Step 3: Split between modes, per assumed Mode Splits

Land Uso	Land Use Mode Split			AM Peak Hour			PM Peak Hour			
Land OSE	Wiode	Split	In	Out	Total	In	Out	Total	Total	
Retail	Auto	50%	1 ppl/hr	0 ppl/hr	1 ppl/hr	3 ppl/hr	3 ppl/hr	6 ppl/hr	53 ppl	
Retail	Transit	25%	1 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	2 ppl/hr	3 ppl/hr	27 ppl	
Retail	Bike	5%	0 ppl/hr	0 ppl/hr	0 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	5 ppl	
Retail	Walk	20%	0 ppl/hr	0 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	2 ppl/hr	21 ppl	

Step 4: Convert auto trips back to vehicles/hour

Land Use	People/Car		AM P	eak Hour		Daily		
Land Ose	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total
Retail	1.82 ppl/veh	1 veh/hr	0 veh/hr	1 veh/hr	2 veh/hr	1 veh/hr	3 veh/hr	29 veh

Trip Gen Summary for Retail

Mode	AM Peak Hour				Daily		
Mode	In	Out	Total	In	Out	Total	Total
Auto	1 veh/hr	0 veh/hr	1 veh/hr	2 veh/hr	1 veh/hr	3 veh/hr	29 veh
Transit	1 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	2 ppl/hr	3 ppl/hr	27 ppl
Bike	0 ppl/hr	0 ppl/hr	0 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	5 ppl
Walk	0 ppl/hr	0 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	2 ppl/hr	21 ppl

Multimodal Trip Generation Summary

690 beds

600 net new beds

1,535 SF retail

Mode	Mada Culit	Land Use	1	AM Peak Ho	ur		PM Peak Hou	ır
wode	Mode Split	Land Use -	ln	Out	Total	In	Out	Total
A 4 -	20%	Residential	5	8	13	14	16	30
Auto (veh/hr)	50%	Retail	1	0	1	2	1	3
(**************************************		Total	6	8	14	16	17	33
	50%	Residential	16	23	39	44	43	87
Transit (ppl/hr)	25%	Retail	1	0	1	1	2	3
(РР!/111)		Total	17	23	40	45	45	90
Dile	5%	Residential	2	2	4	4	5	9
Bike (ppl/hr)	5%	Retail	0	0	0	0	1	1
(РР// 111)		Total	2	2	4	4	6	10
\A/alls	25%	Residential	8	11	19	22	21	43
Walk (ppl/hr)	20%	Retail	0	0	0	1	1	2
(PPI/III)		Total	8	11	19	23	22	45

Residential Trip Generation

569 net new bedrooms

Step 1: Base trip generation using ITEs' Trip Generation

Land Use	Land Use Code	Quantity (x)		AM Pe	eak Hour		Daily		
Land Ose	Land Ose Code	Qualitity (x)	In	Out	Total	In	Out	Total	Total
Apartments	225	569 br	25 veh/hr	37 veh/hr	62 veh/hr	70 veh/hr	69 veh/hr	139 veh/hr	1778 veh
	Ca	Iculation Details:	41%	59%	=0.1X+5.31	50%	50%	=0.24X+2.9	=3.03X+54.26

Step 2: Convert to people per hour, before applying mode splits

Land Use	People/Car		AM Pe	eak Hour		Daily		
Land Ose	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total
Apartments	1.18 ppl/veh	30 ppl/hr	43 ppl/hr	73 ppl/hr	83 ppl/hr	81 ppl/hr	164 ppl/hr	2098 ppl

Step 3: Split between modes, per assumed Mode Splits

				AM Peak Hour			PM Peak Hour			
Land Use	Mode	Split	In	Out	Total	In	Out	Total	Daily Total	
Apartments	Auto	20%	6 ppl/hr	9 ppl/hr	15 ppl/hr	17 ppl/hr	16 ppl/hr	33 ppl/hr	420 ppl	
Apartments	Transit	50%	15 ppl/hr	22 ppl/hr	37 ppl/hr	42 ppl/hr	40 ppl/hr	82 ppl/hr	1049 ppl	
Apartments	Bike	5%	2 ppl/hr	2 ppl/hr	4 ppl/hr	4 ppl/hr	4 ppl/hr	8 ppl/hr	105 ppl	
Apartments	Walk	25%	8 ppl/hr	10 ppl/hr	18 ppl/hr	21 ppl/hr	20 ppl/hr	41 ppl/hr	525 ppl	

Step 4: Convert auto trips back to vehicles/hour

Land Use	People/Car		AM P	eak Hour		Daily		
Land Ose	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total
Apartments	1.18 ppl/veh	5 veh/hr	8 veh/hr	13 veh/hr	14 veh/hr	14 veh/hr	28 veh/hr	356 veh

Trip Gen Summary for Residential

Mode	AM Peak Hour				Daily		
Wode	In	Out	Total	In	Out	Total	Total
Auto	5 veh/hr	8 veh/hr	13 veh/hr	14 veh/hr	14 veh/hr	28 veh/hr	356 veh
Transit	15 ppl/hr	22 ppl/hr	37 ppl/hr	42 ppl/hr	40 ppl/hr	82 ppl/hr	1049 ppl
Bike	2 ppl/hr	2 ppl/hr	4 ppl/hr	4 ppl/hr	4 ppl/hr	8 ppl/hr	105 ppl
Walk	8 ppl/hr	10 ppl/hr	18 ppl/hr	21 ppl/hr	20 ppl/hr	41 ppl/hr	525 ppl

Multimodal Trip Generation Summary

659 beds

569 net new beds

1,535 SF retail

Mada	Mada Culit	Land Han	1	AM Peak Hou	ur		PM Peak Hou	ır
Mode	Mode Split	Land Use -	ln	Out	Total	ln	Out	Total
A 4 -	20%	Residential	5	8	13	14	14	28
Auto (veh/hr)	50%	Retail	1	0	1	2	1	3
(**************************************		Total	6	8	14	16	15	31
T	50%	Residential	15	22	37	42	40	82
Transit (ppl/hr)	25%	Retail	1	0	1	1	2	3
(PPI/III)		Total	16	22	38	43	42	85
D.1	5%	Residential	2	2	4	4	4	8
Bike (ppl/hr)	5%	Retail	0	0	0	0	1	1
(PPI/III)		Total	2	2	4	4	5	9
\A/-II-	25%	Residential	8	10	18	21	20	41
Walk (ppl/hr)	20%	Retail	0	0	0	1	1	2
(PPI/III)		Total	8	10	18	22	21	43

C. Scoping Information

District Department of Transportation (DDOT) Comprehensive Transportation Review (CTR) Scoping Form

The purpose of the Comprehensive Transportation Review (CTR) study is to evaluate potential impacts to the transportation network that can be expected to result from an approved action by the Zoning Commission (ZC), Board of Zoning Adjustment (BZA), Public Space Committee (PSC), a Federal or District agency, or an operational change to the transportation network. The Scoping Form accompanies the *Guidance for Comprehensive Transportation Review* and provides the Applicant an opportunity to propose a scope of work to evaluate the potential transportation impacts of the project.

Directions: The CTR Scoping Form contains study elements that an Applicant is expected to complete to determine the scope of the analysis. An Applicant should fill out this *Scoping Form* with a proposed scope of analysis commensurate with the requested action and submit to DDOT for review and concurrence. Accordingly, not all elements and figures identified in the *Scoping Form* are required for every action, and there may be situations where additional analyses and figures may be necessary. Once a completed Scoping Form is submitted, DDOT will provide feedback on the initial parameters of an appropriate analysis scope. DDOT's turnaround times are four (4) weeks for CTRs with a Traffic Impact Analysis (TIA) and three (3) weeks for all other lower tier studies. After the *Scoping Form* has been finalized and agreed to by DDOT, the Applicant is required to expand upon the elements outlined in this Form within the study.

Scoping Information						
Date(s) Scoping Form Submitted to DDOT: June 15, 2021 (Responses to DDOT comments submitted August 12, 2021)						
DDOT Case Manager: Aaron Zimmerman / Ted Van Houten						
Date(s) Scoping Form Comments Returned to Applicant: July 28, 2021						
Date Scoping Form Finalized:						

Project Overview	Proposed Development Program
Project Name: Landmark Housing at Wesley Theological Seminary	Use(s): Residential (student)
Case Type & No. (ZC, BZA, PSC, etc.): ZC	Residential (dwelling units): 690 beds, including 90 replacement beds (600 net new beds)
ANC/SMD: 3D02	Retail (square feet): 1,535
Applicant/Developer Name:	Office (square feet): N/A
LCD Acquisitions, LLC	
315 Oconee Street, Athens, GA 30601	
Attn: Eric Leath, Eric.Leath@LandmarkProperties.com	
Transportation Consultant and Contact Info:	Hotel (rooms): N/A
Gorove/Slade Associates, Inc.	
1140 Connecticut Avenue NW, Suite 600, Washington, DC 20036	
Erwin Andres, 202-540-1925, ena@goroveslade.com	
Katie Wagner, 202-540-1927, klw@goroveslade.com	

Appendix C - Scoping Information

Land Use Counsel and Contact Info:	Other: 690 beds, including 90 replacement beds (600 net new
Greenstein DeLorme & Luchs, P.C.	beds)
801 17th Street NW, Suite 1000, Washington, D.C. 20006	
Attn: John Patrick Brown, Jr., Esq., jpb@gdllaw.com	
Site Street Address: 4500 Massachusetts Ave NW, Washington, DC 20016	# of Vehicle Parking Spaces: 360
Site Square & Block: Square 1600, Lot 0819	# of Carshare spaces: 0
Current Zoning and/or Overlay District: RA-1	# of Electric Vehicle Stations: 0
Estimated Date of Hearing: N/A	# of Bicycle Parking Spaces (long- and short-term)
Small Area Plan (if applicable): N/A	Long-term: 62 required; 62 proposed
Livability Study (if applicable): N/A	Short-term: 11 required; 12 proposed
Within ½ Mile of Metrorail or ¼ mile of Streetcar/Circulator/Priority Bus?: No	Loading Berths/Spaces:
	Required: One (1) loading berth and one (1) service/delivery space
	Proposed: One (1) 30' x 12' loading berth and one (1) 20' x 10'
	service/delivery space

Documents to be Submitted to DDOT: Any action requiring a CTR or some other evaluation of on-site or off-site transportation facilities must submit one of the following documents to DDOT. It must be appropriately scoped for the specific action proposed and document all relevant site operations and transportation analyses.

CTR Study (100 or person total person trips, or 25 or more peak hour vehicle trips in peak direction, or as deemed necessary by DDOT)
Transportation Statement (limited scope based on specifics of project or if Low Impact Development Exemption from CTR and TIA is requested)
Standalone TIA (project proposes a change to roadway capacity, operations, or directionality, has a site access challenge, or as deemed necessary by DDOT)
Other, specify:
Include one (1) hard copy of final report, PDF of report w/appendices, traffic analysis files, and traffic counts in DDOT-required spreadsheet format (total size of all digital files under 15 MB, if possible)

Existing Site and Description of Action: Describe the type(s) of regulatory approval(s) being requested and any background information on the project relevant to the requested action such as the existing uses, amount of vehicle parking, and other notable proposed changes on-site.

The site location is within the Wesley Theological Seminary (WTS) campus, which is generally bounded by University Avenue NW to the west, Massachusetts Avenue NW to the north, and the American University (AU) campus to the east and south. The portion of the site to be redeveloped is currently occupied by a surface parking lot. The proposed project includes removal of surface parking & an existing residence building and construction of a new student housing building with below grade parking, to include:

- Student Housing
 - o Removal of 90-bed residence building
 - o Construction of new building with 219 student housing units
 - 690 beds, including 90 replacement beds (600 net new beds)
- Vehicular parking
 - o Removal of 143 of 174 surface parking spaces
 - o Construction of 360 spaces in a new underground garage (217 net new spaces),
- Bicycle parking
 - o 11 or more short-term spaces
 - o 62 or more long-term spaces

Appendix C - Scoping Information

Prior Related Action(s), Conditions, and Commitments: Note any prior approvals by ZC, BZA, or PSC (Campus Master Plan, First Stage PUD, student/faculty cap, etc.) for the site and list all relevant conditions and proffers still in effect from the previous approval and status of completion. Attach a copy of the Decision section from the previous Zoning Order if still in effect.

Pursuant to the Z.C. Order No. 05-40, effective January 16, 2007, the Commission approved a campus plan authorizing a total campus buildout of 245,000 square feet with student enrollment, employee, and student housing population caps.

Pursuant to the Original Order, effective June 14, 2012, the Commission approved a new campus plan (the "Wesley Campus Plan") instead of the application's initial request to modify the campus plan approved by Z.C. Order No. 05-40, with several conditions including:

- Condition No. 1 established the validity of the Original Order to December 31, 2025; and
- Condition No. 5 required that Wesley provide at least 172 student beds.

Pursuant to Z.C. Order No. 05-40B, effective August 17, 2016, the Commission approved a modification to the Original Order to revise:

- Condition No. 1 to extend the validity of the Original Order to December 31, 2019;
- Condition No. 5 to permit Wesley to house up to 55 non-Wesley graduate students in Straughn Hall provided no Wesley students were denied housing; and
- Condition No. 10 to clarify transportation management and community meeting requirements.

Pursuant to Z.C. Order No. 05-40C, effective August 18, 2017, the Commission approved a Minor Modification to the Original Order, as modified by Z.C. Order No. 05-40B, to revise Condition No. 5 to:

- Expand Wesley's ability to house non-Wesley graduate students to two other campus buildings up to 6 non-Wesley graduate students at Carroll Hall and up to 26 non-Wesley graduate students at the New Residential Building;
- Extend the time period for housing all non-Wesley graduate students to December 31, 2019; and
- Prohibit Wesley from selling or leasing any part of its campus to American University.

On October 21, 2019, the Z.C. approved Wesley's Modification of Consequence to modify Conditions No. 1 and 5 of Z.C. Order No. 05-40A, as modified by Z.C. Order Nos. 05-40B and 05-40C, to read as follows:

- 1. Approval of the Campus Plan shall be valid until December 31, 2020.
- 5. The Applicant shall provide a maximum of 172 beds during the term of the Campus Plan. In the event any of the student housing in Straughn Hall ("Straughn Housing"), Carroll Hall ("Carroll Housing"), or the New Residential Building ("New Housing") is not needed to house Wesley students:
 - a) Applicant may allow the Straughn Housing to be leased and occupied by not more than fifty-five (55) non-Wesley graduate students through December 31, 2020;
 - b) Applicant may allow the Carroll Housing to be leased and occupied by not more than six (6) non-Wesley graduate students through December 31, 2020;
 - c) Applicant may allow the New Housing to be leased and occupied by not more than twenty-six (26) non-Wesley graduate students through December 31, 2020;
 - d) No Wesley students shall be denied housing to allow for housing of non-Wesley graduate students; and e. Applicant will not sell or lease any part of the Wesley Campus to the American University for university use during the term of the current Wesley Campus Plan ending on December 31, 2020.

Note: The Wesley Campus Plan ends on June 30, 2021, not December 31, 2020.

The current application is part of a Campus Plan amendment consisting of a new administrative building replacing the Old President's House, as well as a new student housing building, which is the subject of this CTR.

Section 1: SITE DESIGN

DDOT reviews the site plan to evaluate consistency with DDOT's standards, policies, and approach to access as documented in the most recent Design and Engineering Manual (DEM). If the proposal for use of public space is found to be inconsistent with the agency approach, DDOT will note this regardless of its relevance to the action. It is DDOT's position that issues regarding public space be addressed at the earliest possible opportunity to ensure the highest quality project design and to minimize project delays and the need to re-design a site in the future.

addressed at the earnest possible opportunity to ensure the highest quality project design and the need to be design a site in the lattice.								
CATEGORY & GUIDELINES	CONSULTANT PROPOSAL	DDOT COMMENTS						
Site Access Show site access points for all modes. Include proposed curb cut locations, curb cuts to be closed, access controls (e.g., right-in/out, signalized), sight distances and sight triangles from access points and new intersections, driveway widths and spacing, on- and off-site parking locations, inter-parcel connections, public/private status of driveways, alleys, and streets, and whether easements, dedications, or closures are proposed. Access must be located off an adjacent existing or "paper" alley, otherwise off the lower volume street. Note any deviations from curb cut policies (DEM 31.5) w/justification and if Conceptual Approval by the Public Space Committee (PSC) has/is being sought. Subtitle I § 600-603 of ZR16 further restricts where curb cuts can be located. DDOT will not support curb cut design relief	Pedestrian access to the project is proposed to be located at an entrance on the northern edge of the development along the WTS driveway. Bicycle access will be provided from the WTS driveway. The site is located approximately 0.5 miles northwest of the bike lanes on New Mexico Avenue NW and 0.5 miles southwest of the on-street signed route on 43 rd Street NW. Vehicular access to the proposed garage will be via a driveway on the northern edge of the site, accessed from the WTS driveway. Loading and deliveries will occur in an internal loading area accessed from a curb cut on the WTS driveway. No new curb cuts from public space are proposed as part of this project. All vehicular access will remain from existing access locations at the two-way WTS driveway entrance/exit at Massachusetts Avenue NW and the one-way WTS driveway exit at University Avenue NW is one-way outbound for all vehicles except WTS food service trucks, for which two-way traffic is permitted. This arrangement is not expected to change because of the project. Scoping Graphic: Project Location Map Scoping Graphic: Site Circulation Plan Scoping Graphic: Plat for Site's Square and Lot from Office of the Surveyor (if official plat not available, provide plans from SURDOCs)	GS Response: Noted.						

4 CTR Scoping Form Version 1.1 – June 2019

proposed deviations or requested relief from ZR16 or DDOT standards with justification. If any relief is being sought

Landmark Housing at Wesley Theological Seminary - 7/28/21 Appendix C - Scoping Information unless there is a clear hardship preventing a project from meeting all DDOT standards and other alternatives have been explored. All proposed private streets connecting to a public street must be built to DDOT standards and have a public access easement. Design of driveways and drive aisles on private property must comply with Subtitle C § 711 of ZR16. Acknowledged Loading and deliveries will occur in an internal loading area accessed from a curb cut on the WTS driveway. Loading The loading area will include one (1) 30' x 12' loading berth and one (1) 20' x 10' service/delivery space. Discuss and show the GS Response: Noted. quantity and sizes of loading berths/delivery The proposed loading facilities meet ZR16 regulations, as shown below. spaces, trash storage locations, on- and off-Proposed loading ZR16 required loading site loading locations, **Land Use** Size Service/delivery Service/delivery turnaround design, **Berths Berths** spaces spaces nearby commercial loading zones, and 1,535 sf 0 0 0 Retail 0 anticipated demand, 1 Residential 219 du 1 1 operations, and routing of delivery and trash 1 Total vehicles. Identify the sizes of trucks All loading vehicle maneuvers will occur within the internal loading area, outside of public space. The anticipated to serve the proposed loading arrangement will accommodate head-in/head-out maneuvers from Massachusetts Avenue site and design vehicles NW and University Avenue NW. Truck turning diagrams will be provided in the CTR. to be used in truck turning diagrams. Provide truck turning Scoping Graphic: Location of loading area w/internal building routing diagrams in the body of ☐ Scoping Graphic: Truck Turning Diagrams (to/from the site, alley, truck routes) the report not the appendix. DDOT requires head-in and head-out truck movements through public space (DEM 31.5) and that direct internal pedestrian connections be provided between retail bays and loading facilities. Note any

then a Loading Management Plan (LMP) is required. A template LMP is provided in Appendix E.

Vehicle Parking

Identify all off-street parking locations (onand off-site) and justify the amount of on-site vehicle parking, including a comparison to the number of spaces required by ZR16 and any previous approvals. Provide parking calculations and parking ratios by land use, including any eligible ZR16 vehicle parking reductions (i.e., within 1/4 mile of Priority Bus Route, within ½ mile of Metrorail Station, providing carshare spaces, located within a D zone, etc.).

Review the DDOT Preferred Parking Rates (Table 2). If the total parking provision proposed exceeds the amount calculated using ratios in that table then the number of spaces should be reduced or substantial TDM / nonauto improvements be provided. If parking provision is significantly out of line with appropriate parking ratios, one way or the other, then mode split and trip generations estimates will be adjusted.

Confirm whether ZR16 TDM Mitigations will be required, per Subtitle C § 707.3, for providing more than double the amount of required vehicle The project proposes 360 parking spaces within a garage. The existing use of the site is a 174-space parking lot, from which 143 spaces will be removed; therefore, 217 net new parking spaces are proposed. Because the primary land use is student housing, there is no suitable parking standard from either ZR16 or DDOT's Preferred Parking Rates to compare it to. Per Subtitle C § 701.5, college/university land uses should provide parking as set forth in the approved Campus Plan. The 2006 Zoning Order from the approved Wesley Theological Seminary Campus Plan states that at least 200 parking spaces are to be maintained on campus.

Parking Space Description	Quantity
Minimum spaces required per previous Campus Plan	200
Existing on-campus spaces	174
Existing on-campus spaces lost to Project construction	143
Existing on-campus spaces to remain	31
Proposed new spaces in Project garage	360
Net new spaces resulting from Project	217
Total on-campus spaces after Project	391

Scoping Table: Parking Calculations with Comparison to ZR16 and DDOT's Preferred Vehicle Parking (Table 2)

☐ Scoping Graphic: Off-Street Parking Locations (both on- and off-site)

DDOT finds the proposed amount of parking to be excessive. The Applicant is proposing 360 new parking spaces, while the 2006 Zoning Order from the approved Wesley Theological Seminary Campus Plan states that at least 200 parking spaces are to be maintained on campus. Please justify why 160 extra spaces are needed.

New parking facilities built in the District must charge market rate parking and the employer/institution cannot offer free/subsidized parking for that facility to employees. This is per the new Transportation Benefits Equity Amendment Act of 2020.

Please include more information about how the parking spaces will be used and if the number of parking spaces can be further reduced.

GS Response: As noted in the table, there are 143 existing parking spaces serving the Seminary that will be removed and replaced within the new garage. Therefore, of the 360 total garage spaces, only 217 will be net new spaces to serve the 600 net new beds, resulting in an effective parking ratio of 0.36 spaces per net new bed.

Within the proposed 360-space garage, 105 spaces will be reserved for general WTS use (i.e. not for residents of the proposed building). This number is in keeping with existing conditions; therefore, no net new parking is proposed for non-resident WTS usage.

6 CTR Scoping Form Version 1.1 – June 2019

Appendix C - Scoping Information

parking. Coordinate with
the Zoning Administrator
as early in the process as
possible for an official
determination.

A TDM Plan is required for BZA parking reduction cases, per Subtitle C § 703.4. If relief is being requested from 5 or more spaces, then a Parking Occupancy Study is required (see Multi-Modal section).

Bicycle Parking

Identify the locations of

ZR16 requires 62 long-term and 11 short-term bicycle parking spaces for the project. The proposed quantities and locations of bicycle parking are still being determined, but the project will meet or exceed zoning requirements for bicycle parking. The location and quantities of bicycle parking facilities will be noted in the CTR if that data is available.

Showers and changing facilities are not required for this project.

proposed bicycle parking and justify the amount of long- and short-term spaces proposed. Provide a calculation of the number of spaces required by ZR16. Long-term bicycle

Long-term bicycle parking spaces must be easily accessible from building lobby or located in the parking garage level closest to the ground floor. Lockers and showers must be included with non-residential long-term bicycle storage rooms, per Subtitle C § 806. Provide calculations for required lockers and showers.

Short-term bicycle parking must be accommodated by installing inverted U-racks along the perimeter of the site in the 'furniture zone' of public space, near the site entrance(s).

ZR16 required **Proposed** ZR16 bicycle parking rates bicycle parking bicycle parking Land Use spaces * Size spaces Long-Short-Long-Short-**Short-term** Long-term term term term term

0 0 Retail 1,535 sf 1 per 10,000 sf 1 per 3,500 sf 0 0 Residential 219 du 1 per 3 du's 1 per 20 du's 62 11 62 11 Total 62 11 62 11

Scoping Graphic: Locations of internal bicycle parking spaces, routing to these spaces, and related support facilities including locker rooms, showers, storage areas, and service repair rooms

Page 2 of the scoping form lists 12 short term bicycle parking spaces to be provided, but the calculations here list 11 spaces to be provided. Please clarify

Ensure short- and long-term bicycle parking spaces abide by the design and spacing guidelines outlined in the DDOT Bike Parking Guide (attached) with close attention paid to long-term bike parking requirements (e.g., at least 50% of long-term spaces must allow for bikes to be placed horizontally on the floor or ground without being suspended)

GS Response: Page 2 has been corrected to show 11 short-term spaces. Short- and long-term bicycle parking spaces will adhere to DDOT's Bike Parking Guide.

Streetscape and Public Realm

The Applicant will work with DDOT to ensure the design of the public realm meets current standards. A preliminary public space concept will be provided in the CTR.

Acknowledged

GS Response: Noted.

^{*} Note: Rate applied at 50% after first 50 spaces per ZR16 11C802.2

	Appendix C - Scoping Information	
Provide a conceptual layout of the streetscape and public realm including at minimum: curb cuts, vaults, sidewalk widths, street trees, grade changes, building projections, short-term bicycle parking, and any existing bus stops. Also provide the permit tracking numbers and PSC hearing date, if known, for any approved public space designs.	Scoping Graphic: Preliminary Public Space Concept	
DDOT expects new developments to rehabilitate the streetscape between the curb and property line and meet all public space design standards. Streetscape must meet ADA requirements and ensure nothing impedes accessible curb access or pedestrian circulation. Note any non-compliant public space elements requiring a DCRA code modification or PSC approval.		
A summary of public space best practices is provided in Section 1.5. DDOT standards are documented in the DEM, Public Realm Design Manual, and corridor Streetscape Guidelines (if applicable).		
Custoinable	Sustainable transportation elements for this development will be discussed in the CTR.	Acknowledged
Sustainable	The state of the s	
Transportation		GS Response: Noted.
Elements Identify all sustainable transportation elements, such as electric vehicle (EV) charging stations and carshare spaces proposed to be included		

C-8

Appendix C - Scoping Information

in the project. Electrical conduit should be installed in parking garage so that additional EV stations can be provided later.

DDOT recommends 1 per 50 vehicle spaces be served by an EV station. DDOT encourages providing car share spaces on-site to reduce the ZR16 parking requirement and support non-car ownership lifestyles.

Heritage, Special, and Street Trees

Heritage Trees are defined as having a circumference of 100 inches or more and are typically located on private property. They are protected by the District's Tree Canopy **Protection Amendment** Act of 2016 and must be preserved if deemed non-hazardous by Urban Forestry Division (UFD). Special Trees are between 44 inches and 99.99 inches in circumference and may be removed with a permit.

Note whether there are existing Heritage Trees on-site or in adjacent public space. The presence of Heritage Trees will impact site design since they may not be cut down. Work w/the UFD Ward Arborist to determine if there are Heritage or Special Trees on-site that must be preserved and if Tree Preservation or

The applicant will work with UFD to determine if there are any Heritage or Special Trees on-site. A screenshot from UFD's street tree website is included in the attachments.

Scoping Graphic: Street Tree Inventory Study Area

Please coordinate with DDOT arborists and address any tree-related issues as early as possible. There are Special and Heritage Trees within and directly adjacent to the parking lot that must be considered.

Apply for a Special Tree permit to remove trees 44" – 99.99" circumference within and/or directly adjacent to the limits of disturbance. It appears there are 2 Special Trees within the parking lot that will need to be removed, but if more trees exist in this area please show them on an ESC or Demo Plan for UFD to assess. Refer to the following link for Special Tree removals – DDOT Urban Forestry - Tree Permitting (arcgis.com)

A Heritage Tree is shown to remain on the southwest side of the site. Confirm size and health of this tree. Non-Hazardous Heritage Trees cannot be damaged or cut down and the only options are to protect in place or relocate.

If there are any trees 44" circumference and greater in size to remain, the following shall apply:

- Show the Critical Root Zone and the Structural Root Zone of each tree
- Critical Root Zone (CRZ) = 1.5 foot radius from the base of the tree's trunk for each 1 inch of the tree's diameter
- Structural Root Zone (SRZ) = 0.5 foot radius from the base of the tree's trunk for each 1 inch of the tree's diameter
- Measurements are taken at 4.5 feet above grade (also referred to as the diameter at breast height). If a tree is on a slope, multi-stemmed and/or splits below 4.5 feet, please refer to the following link for measuring DBH http://www.phytosphere.com/treeord/measuringdbh.htm
- Contact DDOT arborists Sam Doan (samuel.doan@dc.gov) and Yasha Magarik (yasha.magarik@dc.gov) to discuss the scope of work and determine the type of tree protection measures needed. Protection measures are based on the extent of impact(s) to the critical and structural root zones

C-9
CTR Scoping Form Version 1.1 – June 2019

	Appendix & Cooping Information	
Relocation Plans are required. Conduct an inventory of existing and missing street trees within a 3-block radius of the site (design standards are in DEM 37.5). Identify any opportunities for UFD or the Applicant (as part of the mitigations package) to install missing treeboxes and street trees.		Refer to the following link for DDOT Urban Forestry's Tree Preservation Policies - https://ddot-urban-forestry-dcgis.hub.arcgis.com/pages/tree-preservation Revise documents to include tree protection measures (Basic or Advanced) recommended by UFD as well as a copy of the tracking number, invoice or issued permit for any trees to be removed GS Response: Noted; the Applicant will coordinate with DDOT UFD on any tree-related issues.

Section 2: TRAVEL ASSUMPTIONS

CATEGORY & GUIDELINES			CONSU	LTANT I	PROPOS	AL	DDOT COMMENTS
Mode Split Provide mode split assumptions with sources and justification.		•				commute to campus mode splits, and ode split assumptions for the project	
ources of data could	Mode						
ude the most recent sus Transportation	Land Use	Drive	Transit	Bike	Walk		
ning Products (CTPP) 2005 WMATA	Residential	20%	50%	5%	25%		
velopment-Related	Retail	50%	25%	5%	20%		
count for internal trip nergies for mixed use velopments. Ijustments to mode lit assumptions may be ade, as appropriate, if e number of vehicle wrking spaces proposed significantly lower or after than expected for e context of the lighborhood.							
agreed upon mode assumptions may be revised between ing and CTR							

10 CTR Scoping Form Version 1.1 – June 2019

submission without DDOT concurrence.

Trip Generation

Provide site-generated person trip generation estimates, utilizing the most recent version of ITE Trip Generation Manual or another agreed upon methodology such as manual doorway or driveway counts at similar facilities. Estimates must be provided by mode, type of trip, land use, and development phase during weekday AM and PM commuter peaks, Saturday mid-day peak, and daily totals. CTR must also include existing site trip generation based on observed counts. Modes include transit, bicycle, walk, and automobile.

DDOT TripsDC tool will be used to determine trip generation estimates for residential-over-retail projects (see Section 2.2.4 for parameters).

Auto occupancy rates by travel purpose published in the 2017 National Household Travel Survey should be used when calculating person trips based on suburban vehicle trip data in Trip Generation Manual (see Table 3).

Adjustments to trip generation may be made, as appropriate, if the number of vehicle parking spaces proposed is significantly lower or higher than expected for Multi-modal trip generation was calculated using ITE *Trip Generation* 10th Edition rates for Land Use 225 (Off-Campus Student Apartment) using the "adjacent to campus" setting.

The ITE trip generation for the proposed project is shown below and included in the attachments.

Mode	Mode	Land Use	AN	l Peak H	lour	PN	l Peak H	our
Wode	Split	Lanu USe	ln	Out	Total	ln	Out	Total
	20%	Residential	5	8	13	15	15	30
Auto (veh/hr)	50%	Retail	1	0	1	2	1	3
(**************************************		Total	6	8	14	17	16	33
	50%	Residential	16	23	39	45	44	89
Transit (ppl/hr)	25%	Retail	1	0	1	1	2	3
(PPI/III)		Total	17	23	40	46	46	92
	5%	Residential	2	2	4	4	5	9
Bike (ppl/hr)	5%	Retail	0	0	0	0	1	1
(PPI/III)		Total	2	2	4	4	6	10
	25%	Residential	8	11	19	22	22	44
Walk (ppl/hr)	20%	Retail	0	0	0	1	1	2
(ppi/iii)		Total	8	11	19	23	23	46

The above trip generation is only for the proposed residential (600 beds) and retail (1,535 SF) components of the Landmark Housing project. The project's parking facility will also serve general campus trips outside of residents and staff of the Landmark Housing project itself. These existing vehicular campus trips, which were established previously with turning movement counts at the site driveways, are presented below alongside the Landmark Housing project-generated trips.

Mode	Land Use	A	M Peak	Hour	PM Peak Hour		
Wode		ln	Out	Total	ln	Out	Total
	Proposed Residential	5	8	13	15	15	30
Auto (veh/hr)	Proposed Retail	1	0	1	2	1	3
	Net New Trip Generation	6	8	14	17	16	33
	Existing Campus	25	11	36	31	37	68
	Total Campus Trip Generation	31	19	50	48	53	101

Scoping Table: Multi-Modal Trip Gen Summary (w/mode split and applicable reductions, as appropriate)

Acknowledged

GS Response: Noted.

C-11 CTR Scoping Form Version 1.1 – June 2019

Appendix C - Scoping Information

	dix C - Scoping information	
the context of the		
neighborhood.		
Dace by rates in the		
Pass-by rates in the		
District are minimal and		
should only apply to		
major retail-dominant		
destinations, grocery		
stores, and gas stations.		
An adjusted pass-		
by/diverted trips		
methodology should be		
developed if		
development is not		
located on a road		
classified as arterial or		
higher.		
The agreed upon trip		
generation methodology		
may not be revised		
between scoping and		
CTR submission without		
DDOT concurrence.		
Consult the DDOT Case		
Manager if site plan,		
development program,		
land uses, or density		
changes significantly.		

Section 3: MULTI-MODAL NETWORK EVALUATION

A CTR study is required if the project generates at least 100 peak hour person trips or 25 vehicle trips in the peak direction (highest of inbound or outbound) in any study period. Existing site traffic, pass-by, TDM, internal capture or other reductions may not be taken in the calculation to determine if the project meets these thresholds. However, they may be taken in the TIA, as appropriate, if a study is triggered. Analyses in the Multi-Modal Network Evaluation section are required in all CTRs, unless otherwise specified. A Transportation Statement may only require some of the following sections depending on the specifics of the project and zoning action.

The requirement for a CTR may be waived if site is within ½ mile from Metrorail or ¼ mile from Priority Transit, the total vehicle parking supply below level expected within ¼ mile of Metrorail Station (see Table 2), maximum 100 parking spaces, an Enhanced TDM Plan is implemented, site access and loading design are acceptable, there is a complete pedestrian network in the vicinity of the site, and meets all ZR16 bike parking and locker/shower requirements. Additional criteria may be found in the Low Impact Development Exemption section of *Guidance for CTR*.

CATEGORY & GUIDELINES	CONSULTANT PROPOSAL	DDOT COMMENTS
Strategic Planning Elements Identify relevant planning efforts and	The CTR will consider the suggested studies included in the column to the left in addition to the following studies located near the development: Sustainable DC Plan Rock Creek Far West Livability Study Wesley Campus Plan (2012)	Acknowledged GS Response: Noted.
demonstrate how the proposed action is consistent with District-	American University 2021 Campus Plan CTR	

relevant plans and studies may be provided by the DDOT Case Manager.

Landmark Housing at Wesley Theological Seminary - 7/28/21 Appendix C - Scoping Information wide planning documents, as well as localized studies. Note in scoping form any recommendations from these documents relevant to the development proposal. The evaluation will consider at least the following high level/District-wide documents: MoveDC and its relevant modal elements • DDOT Livability Study (relevant to the project) • OP Small Area Plans (relevant to the project) • DC Highway Plan (shown on official plat) • District of Columbia Comprehensive Plan Vision Zero Action Plan • Capital Bikeshare Development Plan Washington Metropolitan Area Transit Authority's (WMATA) Metrorail and Metrobus Plans DDOT Corridor studies (e.g., Transit Development Plan, Streetscape Design Plans and Guidelines) Details on additional

University Avenue NW adjacent to campus does not have a sidewalk The study will review pedestrian walking routes to and from the site along with an assessment of facilities Pedestrian on either side. DDOT would like the Applicant to fill in this sidewalk along these walking routes and on all pedestrian facilities within 1/4 mile of the site following section 3.2 of Network gap as part of this development. DDOT's CTR guidelines, plus additional walking routes to major destinations. The assessment will evaluate Evaluate the condition of whether facilities meet DDOT and ADA standards. GS Response: The Applicant acknowledges DDOT's request for a the existing pedestrian network and forecast the sidewalk at this location and will continue to consider it as part of the Scoping Graphic: Pedestrian Study Area w/Walking Routes to Transit, Schools, Activity Centers project's impact. forthcoming CTR. Evaluation must include. at a minimum, critical walking routes, sidewalk widths, network completeness, whether facilities meet DDOT and ADA standards, and whether pedestrian signal timings are adequate (within vehicle study area). Study area will include, at a minimum, all roadway seaments and multi-use trails within a 1/4 mile radius from the site, with a focus on connectivity to Metrorail, transit stops, schools, and major activity centers. Acknowledged The bicycle study area focuses on the routes that cyclists will take to and from major bicycle facilities. We will Bicycle Network also highlight the internal bicycle circulation and facilities. Evaluate the condition of GS Response: Noted. the existing bicycle network and forecast the A review of existing and planned bicycle facilities serving the site within a ½ mile will be included with an project's impact, assessment of connections between the site and major facilities, including a qualitative review of how including to Capital cyclists going to and from the site will access major facilities (paths, bike lanes, etc.). The review of bicycle Bikeshare (CaBi). facilities will follow DDOT's CTR guidelines found in section 3.3.1. Evaluation must include, at a minimum, bicycle network completeness, types of facilities, and adequacy of CaBi locations and availability. Bikeshare station demand data can be obtained from the CaBi Tracker website. Study area will include, at a minimum, all roadway segments and multi-use trails within a ½ mile radius from the Scoping Graphic: Bicycle Study Area w/Bicycling Routes to Transit, Schools, Activity Centers site, with a focus on connectivity to Metrorail, transit stops, schools,

C-14 CTR Scoping Form Version 1.1 – June 2019

major activity centers, and other bicycle trails or facilities. Note where bike lanes conflict with access to the site or on-street loading movements associated with the project. If a CaBi station is currently located along the site frontage, the Applicant must assume the station will stay in place after the development has been constructed and must be designed in the public space plans. If it is not physically possible to stay in place, then DDOT expects the Applicant to demonstrate this hardship, propose a viable alternative location, and fund the station relocation. The minimum size of a new CaBi station is 19 docks with 12 bikes. Acknowledged The study will discuss transit routes and schedules, including headway and span of service for Metrorail Transit Network stations within one (1) mile of the site and for WMATA bus stops within ½ mile of the site. The study will Evaluate, at a minimum, GS Response: Noted. evaluate the sufficiency of the identified services and access to those services from a qualitative standpoint. existing transit stop Additionally, transit stop locations will be evaluated. Any planned transit improvements will be included in locations, adjacent bus routes and Metro the report. This study will not include a quantitative study of boarding and alighting volumes at specific headways, planned transit stops. All transit network evaluations will follow guidance as outlined in section 3.4 of DDOT's CTR transit improvements, guidelines. and an assessment of existing transit stop Scoping Graphic: Transit Study Area with Adjacent Routes and Stations conditions (e.g., ADA compliance, bus shelters, 🗵 Scoping Graphic: Screenshots from DDOT transit maps showing where the site falls within buffers from Metrorail and benches, wayfinding, **Priority Transit** etc.). For Metrorail stations, refer to the 2009 WMATA Station Site and Access Planning Manual, as well as various station capacity studies. Study area is 1.0 mile for Metrorail stations and 1/2 mile for Streetcar,

C-15

15

DDOT policies and practices. The curbside

Landmark Housing at Wesley Theological Seminary - 7/28/21 Appendix C - Scoping Information Circulator, and WMATA buses. All existing bus stops and shelters must be accommodated during construction, assumed to be returned to the original location after construction, and designed into the public space plans. If a bus stop and/or shelter must be moved then the Applicant will fund the relocation and obtain approval from DDOT and WMATA for the new location. Applicant must fund the electrification of all new or relocated shelters. A qualitative evaluation of safety conditions within the proposed study area will be included in the CTR Acknowledged **Safety Analysis** following the guidance set forth in section 3.6 of DDOT's CTR guidelines. Qualitatively evaluate GS Response: Noted. safety conditions at intersections and along blocks within the vehicle study area. Perform a review of DDOT Vision Action Plan. Note whether any study intersections have been identified by DDOT as high crash locations, if any safety studies have been previously conducted, and discuss the recommendations. Depending on the results of the TIA, DDOT may require improvements to nearby intersections previously identified as having known safety issues. Acknowledged No changes to curbside management are proposed as part of this project. Curbside Management GS Response: Noted. Propose a curbside management plan that is consistent with current

management plan must delineate existing and proposed on-street

designations/restrictions,

including but not limited to pick-up/drop-off zones, commercial loading zones, multispace meters, RPP, and net change in number of on-street spaces as a result of the proposal. Note that the preliminary curbside management plan will not be approved by DDOT during the zoning process. Applicant must submit a more detailed signage and marking plan via TOPS for formal review and approval by DDOT-PGTD during public space permitting. DDOT expects the Applicant to fund the installation of multi-space meters on blocks where meters are

parking

required.

Pick-Up and

Drop-Off Plan

This plan is required for all schools and daycares with 20 or more students. It may also be required for churches, hotels, or any other use expected to have significant pick-up and drop-off operations, as necessary. The plan will identify pick-up and drop-off locations and demonstrate adequate circulation so that the flow of bicycles and vehicles is not impeded and queueing does not occur through the pedestrian realm.

Appendix C - Scoping Information ☐ Scoping Graphic: Existing Curbside Designations (min. 2 block radius of site) A pick-up/drop-off plan is not necessary. The intensity of the development program is not expected to have Acknowledged significant pick-up and drop-off operations. GS Response: Noted.

C-17 17 CTR Scoping Form Version 1.1 - June 2019

more vehicle parking

andmark Housing at We	sley Theological Seminary – 7/28/21 Appendix C - Scoping Information	
DDOT will require this plan for schools and daycares currently in operation even if the relief requested from the BZA is not related to a student cap increase.		
On-Street	Zoning relief for parking is not being sought, therefore this section is not applicable.	Acknowledged
Parking		GS Response: Noted.
Occupancy		
Study This analysis is required if BZA relief from 5 or more on-site vehicle parking spaces is being requested. It may also be required as part of a ZC or permitting case if DDOT has concerns about site-generated vehicles parking in adjacent residential neighborhoods.	□ Scoping Graphic: Study Area/Block Faces	
Vehicle parking occupancy counts will be collected hourly during periods of peak demand. These are typically the weekday evening period (6-10 PM) for residential developments, weekday morning period (7-9 AM) if within ¼ mile of Metrorail, and weekend peak periods if there is a commercial component. Parking availability must be assessed a maximum of 2 blocks in each direction from the site, unless otherwise agreed upon. Also include inventory of off-street parking garages in vicinity of site.		
Parking Garage	The proposed garage does have access to a public street; therefore this section is not applicable.	Acknowledged
Queueing		GS Response: Noted.
Analysis If site contains 150 or		

C-18 18 CTR Scoping Form Version 1.1 – June 2019

	Appendix C - Scoping Information	
spaces and direct access		
to a public street,		
evaluate on-site vehicle		
queueing demand and		
provide analysis		
demonstrating parking		
entrance and ramps can		
properly process vehicles		
without queuing onto		
public streets. Provide		
proposed parking supply,		
queuing analysis, and		
physical controls to		
parking area, if		
applicable.		
Motorcoaches	No motorcoach activity is anticipated at the site.	Acknowledged
Propose methodology		
for data collection and		GS Response: Noted.
analysis. Describe and		
show the parking		
locations, anticipated		
demand, existing areas		
on- and off-site for		
loading and unloading		
(and desired loading		
times restrictions, if any),		
and potential routes to		
and from designated		
truck routes. If on-street		
motorcoach parking is		
proposed, a plan for		
installation of signage		
and meters is required,		
subjection to DDOT-		
PGTD approval. This		
section is typically only		
required for uses that		
generate significant		
tourist activity (hotels,		
museums, cruises, etc.).		

Section 4: TRAFFIC IMPACT ANALYSIS (TIA)

The TIA component of a CTR is required when a development generates 25 or more peak hour vehicle trips in the peak direction (higher of either inbound or outbound vehicles in any study peak period), after mode split is applied. Existing site traffic, pass-by, TDM, internal capture or other reductions may not be applied when calculating whether a TIA is required. Applicable reductions may be used in the multi-modal trip generation summary and assignment of trips within the TIA, as appropriate. A standalone TIA may also be required if the project proposes a change to roadway capacity, operations, or directionality; has a site access challenge; or as otherwise deemed necessary by DDOT.

CATEGORY &	CONSULTANT PROPOSAL	DDOT COMMENTS
GUIDELINES	CONSULTANT PROPOSAL	DDOT COMINIENTS

TIA Study Area and Data Collection

Identify study intersections commensurate with the impact of the proposed project and the travel demand it will generate. Study area must include all major signalized and unsignalized intersections, intersections expected to realize large numbers of new traffic, and intersections that may experience changing traffic patterns. Additional guidance on selecting study intersections is provided in DEM 38.3.2.

Turning Movement Counts (TMC) will be collected in 15-minute increments during the weekday morning (6:30 AM to 9:30 AM) and evening (4:00 PM to 7:00 PM) peak periods on Tuesdavs through Thursdays during nonholiday weeks, while schools and Congress are in session, the Fed govt is not in a shutdown, and weather is not an issue, unless otherwise agreed upon. Saturday mid-day peak period (aenerally 11:00 AM to 1:00 PM) will be studied if development program is retail-heavy. TMCs will include vehicles, pedestrians, bicyclists, and % truck traffic. TMCs will be collected at all existing site driveways and reported as existing

We propose the following study intersections:

- 1. Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW
- 2. University Ave & Wesley Cir NW
- 3. University Ave & Sedgwick St/WTS Exit NW
- 4. Massachusetts Ave & 45th St NW
- 5. Massachusetts Ave & WTS Entrance NW
- 6. Massachusetts Ave & Campus Dr NW
- 7. Massachusetts Ave & Wesley Cir NW

As data collection in Spring 2021 is not representative of typical travel patterns due to the COVID-19 emergency, volumes at proposed study intersections are available from several sources, outlined below.

Historical turning movement counts are available at the following intersections:

- Massachusetts Ave & 46th St/Tilden St/Wesley Cir NW (2012 and Feb. 2020)
- University Ave & Sedgwick St/WTS Exit NW (2012)
- Massachusetts Ave & 45th St NW (Feb. 2020)
- Massachusetts Ave & WTS Entrance NW (2012 and Feb. 2020)
- Massachusetts Ave & Campus Dr NW (Feb. 2020)

We propose comparing the volumes from the above-mentioned sources and growing them according to historical DDOT traffic volume data based on their respective years of collection to establish baseline 2021 conditions. The CTR will include detailed calculations and rationales explaining how we established these baseline conditions.

- Scoping Graphic: Study Intersections
- ☑ Provide hard copies of TMCs in CTR appendix and electronic copies in DDOT-required spreadsheet format at time of submission.

Please include the stop-controlled intersection at Wesley Circle and Massachusetts Avenue NW in the study area.

GS Response: Noted; we will include the requested intersection in the study area.

C-20
CTR Scoping Form Version 1.1 – June 2019

	Appendix C - Scoping Information	
conditions in trip generation summary.		
Previously collected TMCs may be used if they are less than 2 years old at the time of study submission. DDOT may require counts be refreshed once TMCs reach 3 years old or if a major transportation or land use change occurs. A growth rate will be applied to TMCs older than 12 months to create present year Existing Conditions.		
TIA Study	We propose to include the following scenarios following section 4.3 of DDOT's CTR guidelines:	Acknowledged
Scenarios Propose an appropriate set of scenarios to analyze. Note the anticipated build-out year and project phasing. Analysis scenarios to be considered:	 Existing Conditions (2021 Existing Conditions) 2024 Future Conditions without the project (2024 Background Conditions) 2024 Future Conditions with the project (2024 Total Future Conditions) 2024 Mitigated Future Conditions with the project (2024 Mitigated Total Future Conditions), as necessary 	GS Response: Noted.
 Existing Conditions (Current Year) 		
 Background Conditions (No-Build) 		
 Total Future Conditions (With Development) 		
 Total Future Conditions (With Development and Mitigation) 		
 Additional Scenarios For Each Phase, as necessary 		
 Total Future Conditions (+5 Years), as required 		
 Long Range +20 Years Planning Scenario, as required 		

C-21 CTR Scoping Form Version 1.1 – June 2019

TIA Methodology

Propose an appropriate methodology for the capacity analysis including the type of software program to be used. Per DEM 38.3.5.1. HCM methodology will be used to determine Level of Service (LOS). v/c, and vehicle queue lengths. LOS must be reported by intersection approach and v/c by lane group. DDOT prefers Synchro 9 or newer software for capacity and queueing analyses. SimTraffic (10 simulations averaged) should be used to further evaluate an observed queueing issue and determine a solution, as necessary.

DDOT's required standard Synchro and SimTraffic inputs/settings are provided in Appendix H.

Merge/weave/diverge analysis is required if any of the study intersections include a highway, freeway, or Interstate ramp (DEM 38.3.5.3). HCS software should be used for this analysis.

y riate ie Capacity analyses will be performed using Highway Capacity Manual (HCM) methodologies using an industry recognized software package. We propose performing the analysis in Synchro 10 and reporting the results in delay and LOS using HCM 2000 methodologies. We propose to analyze the weekday morning and afternoon commuter peak hours, using the system peaks at all study area intersections. Synchro files will be obtained from DDOT for use in the vehicular capacity analysis. Signal timings for the study area intersections will be obtained from DDOT. Field visits will be performed to update existing geometric information into the Synchro models, and update Synchro files with current traffic signal timing plans.

We will apply this methodology to the following analysis scenarios:

- Existing Conditions (2021 Existing Conditions)
- 2024 Future Conditions <u>without</u> the project (2024 Background Conditions)
- 2024 Future Conditions with the project (2024 Total Future Conditions)
 - 2024 Mitigated Future Conditions <u>with</u> the project (2024 Mitigated Total Future Conditions), as necessary

The capacity analysis results will show the average delay, v/c, and the resulting LOS for each approach and for the overall intersection (where available), as well as the queuing results obtained from Synchro 10 for the average and 95th percentile queue for each lane group.

- We will highlight all LOS E or LOS F conditions per intersection and approach.
- We will propose mitigation measures at intersections or approaches that degrade to an LOS E or F
 as a result of the development, or intersections or approaches operating under LOS E or F under
 background conditions that observe an increase in delay of greater than 5 percent, when
 compared to background scenario.
- We will highlight all locations where the 95th percentile queue length exceeds the length of storage. We will note where the proposed project causes the 95th percentile queue length to exceed the available capacity of a lane group when it does not in the background scenario.
- We will propose mitigation measures at intersections where the proposed project causes any 95th
 percentile queue lengths that exceed the available capacity to experience an increase in length of
 greater than 150 feet along any lane group.

An assessment of feasibility given the existing ROW at each location will be given for each mitigation measure.

Will provide copies of Synchro, SimTraffic, and other analysis software printouts in study appendix and electronic copies of analysis files at time of CTR submission.

Acknowledged

GS Response: Noted.

Transportation Network Improvements

List and map all roadway, transit, bicycle, and pedestrian projects funded by DDOT or WMATA, or proffered by others, in the vicinity of the study area and expected to open for public use prior to the There are no proposed improvements to the transportation network that will be assumed in background and total future conditions.

☐ Scoping Graphic: Locations of background transportation network improvements

Acknowledged

GS Response: Noted.

Appendix C - Scoping Information proposal's anticipated build-out year. Review the STIP, CLRP, and proffers/commitments for other nearby developments. There are no known matter-of-right or zoning-approved developments that meet the criteria outlined to the Acknowledged **Local Traffic** left. Therefore, no background developments are proposed for this analysis. Growth GS Response: Noted. List and map developments to be analyzed as local Scoping Graphic: Background development projects near study area background growth. This will include known Scoping Table: Completion amounts/portions occupied of background developments matter-of-right and zoning-approved developments within 1/4 mile of site and others more than ¼ mile from site if their traffic is distributed through study intersections. Document the portions of developments anticipated to open by the projected build-out Acknowledged We propose to examine volumes contained in the MWCOG regional model, as well as historical DDOT AADTs **Regional Traffic** (where available), to develop an average annual growth rate for study area roadways following section 4.6.2 Growth GS Response: Noted. of DDOT's CTR guidelines. A summary of COG model volumes and trends for the study area are attached to Propose a methodology this scoping form. This methodology accounts for all future projects and developments in the COG model to account for growth in and allows for district growth rates by direction and time of day. regional travel demand passing through the We based growth rates between 2020 (data collection) and 2021 (existing conditions) on the differences study area. An between the year 2019 and 2021 COG model scenarios. We based growth rates between 2021 (existing appropriate methodology could conditions) and 2024 (project completion) on the differences between the year 2021 and 2025 COG model include reviewing scenarios. Where the COG model showed negative or minimal growth, we assumed a conservative 0.1% per historic AADT traffic year minimum growth. Maximum growth rates of 0.5% in the peak direction and 2.0% in the non-peak counts, MWCOG model direction were used. growth rates, data from other planning studies, Proposed growth rates for each roadway for the 2020-2021 period and the 2021-2024 period are shown or recently conducted below. nearby CTRs. These sources should only be used as a guide. Generally, maximum annually compounding growth rates of 0.5% in peak direction and 2.0% in non-peak direction are acceptable. Growth rates based should be based

C-23

CTR Scoping Form Version 1.1 – June 2019

Appendix C - Scoping Information

on DDOT historical data from 10+ years, if available. Adjustments to the rates may be necessary depending on the amount of traffic assumed from local background developments or if there were recent changes to the transportation network.

Roadway	Dir.	Anr Growt	osed nual h Rate en 2020 2021 ¹	Prop Total (Betwee	osed Growth en 2020 2021	Prop Annual Rate B	osed Growth etween nd 2024	Total C Betwee	osed Growth en 2021 2024
		AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
Massachusetts	EB	0.10%	0.10%	0.10%	0.10%	0.30%	0.10%	0.90%	0.30%
Ave NW	WB	2.00%	0.50%	2.00%	0.50%	0.10%	0.30%	0.30%	0.90%
Tildon Ct NIM	EB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
Tilden St NW	WB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
46th Ct NIM	NB	2.00%	0.10%	2.00%	0.10%	0.10%	0.10%	0.30%	0.30%
46th St NW	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
University Ave	NB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
NW ³	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
4Eth Ct NIM	NB	0.50%	0.50%	0.50%	0.50%	0.10%	0.10%	0.30%	0.30%
45th St NW	SB	2.00%	0.10%	2.00%	0.10%	0.90%	0.10%	2.72%	0.30%
Campus Dr	NB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
NW .	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%

¹ These rates were applied to volumes recorded in February 2020 that were used to establish 2021 existing conditions. Rates are based on MWCOG's currently adopted regional transportation model for this time period.

Scoping Table: Projected regional growth assumptions (dependent on methodology), show growth rates by facility, direction, and time of day

Scoping Graphic: Projected regional growth assumptions (dependent on methodology), show growth rates by facility, direction, and time of day

C-24

CTR Scoping Form Version 1.1 – June 2019

² These rates were applied to volumes grown from 2021 existing conditions. Rates are based on MWCOG's currently adopted regional transportation model for this time period.

³ Study intersection #3 (University Ave & Sedgwick St/WTS Exit NW) only has available traffic counts from 2012, not February 2020 like the other study intersections. Therefore, to establish 2021 Existing Conditions, annual growth rates of 0.10% will be applied to the northbound and southbound volumes of University Ave NW at this intersection for every year between 2012 and 2021, totaling 0.90% for each direction.

Trip Distribution

Provide sources and justification for proposed percentage distribution of site-generated trips. Additionally, document proposed pass-by distributions and the rerouting of existing or future vehicles based on any changes to the transportation network.

Percentage distributions must be shown turning at intersections throughout the transportation network and at site driveways and garage entrances to ensure appropriate routing assumptions.

The agreed upon trip distribution methodology may not be revised between scoping and CTR submission without concurrence by DDOT Case Manager.

Given the District's urban context and grid network, a small portion of trips (up to 5% of trips through an intersection) may be re-routed from their original routes to an alternate route due to traffic congestion.

Trip distribution for the site was determined based on CTPP TAZ flow data. Attached to this scoping form are figures depicting the CTPP TAZ flow data for residents of the project TAZ commuting by vehicle to other TAZs.

Since the retail component of the project produces an inconsequential amount of vehicle trips (1 in the AM peak hour and 3 in the PM peak hour), a distribution analysis is only provided for the residential component.

The resulting proposed trip distributions are illustrated on an attached graphic.

Scoping Graphic(s): Percentage Distribution by Land Use, Direction, Time of Day

Acknowledged

GS Response: Noted.

C-25

CTR Scoping Form Version 1.1 – June 2019

Section 5: MITIGATION

26

The completed CTR must detail all proposed mitigations. The purpose of discussing mitigation at the scoping stage is to highlight DDOT's Significant Impact Policy, DDOT's approach to mitigation, and to give the Applicant an opportunity to gain initial feedback on potential mitigations that may ultimately be proposed. Any mitigation strategies discussed and included in the *Scoping Form* are considered non-binding until formally evaluated in the study and committed to as part of a related action.

CATEGORY &	CONSULTANT PROPOSAL	DDOT COMMENTS
GUIDELINES	CONSOLIANT PROPOSAL	DDOT COMMENTS
DDOT	☑ The Applicant acknowledges DDOT's Significant Impact Policy.	Acknowledged
Significant		GS Response: Noted.
Impact Policy Vehicle Parking Supply DDOT considers a high parking provision as an 'impact' that needs to be mitigated since it is a permanent site feature that encourages additional driving and yield vehicle trips in the future that were not contemplated in the study. Appropriate mitigations include reducing vehicle parking, implementing substantive TDM strategies, off-site non- automotive network upgrades, and making monetary contributions to DDOT for non-auto improvements. See Table 2 to determine if a site is over-parked based on land use and distance to transit. Capacity Impacts at Intersections All site-generated vehicular impacts to the transportation network during study peak hours must be mitigated, per DEM 38.3.5, if any of the following occur: • Degradation of an approach or	 ☒ The study will comply with all other policies in the Guidance for Comprehensive Transportation Review and the Category & Guidelines column of this Scoping Form not explicitly documented in the Consultant Proposal or DDOT Comments columns. ☒ The study will include all the required graphics, tables, and deliverables for the relevant sections determined during scoping, as shown in Table 1 of Guidance for Comprehensive Transportation Review. 	
intersection to LOS		

C-26

C-27

measures, making upgrades to the pedestrian, bicycle, and transit networks to encourage use of non-

27

Document all existing TDM strategies being implemented on-site (even outside of a formal

Landmark Housing at Wesley Theological Seminary - 7/28/21 Appendix C - Scoping Information automotive modes, or monetary contribution to DDOT for non-auto improvements must be proposed. Only when these options are exhausted will DDOT consider capacityincreasing changes to the roadway network because such changes often have detrimental impacts on nonautomotive travel and are often contrary to the District's multi-modal transportation goals. Acknowledged **Transportation** The Applicant will include at least a Baseline TDM Plan. The TDM plan will increase to Enhanced Plan or beyond depending on the parking ratio and other impacts identified in the study. Demand GS Response: Noted. Management (TDM) A TDM Plan is typically required to offset sitegenerated impacts to the transportation network or in situations where a site provides more parking than DDOT determines is practical for the use and surrounding context. TDM strategies are also an integral part of the District's transportation options. As such, a Baseline TDM plan is required in all CTRs regardless of impacts to the network. An Enhanced Plan or greater is required if the site is over-parked per Table 2 or there are roadway impact identified. Sample TDM plans by land use and tier can be found in Appendix C.

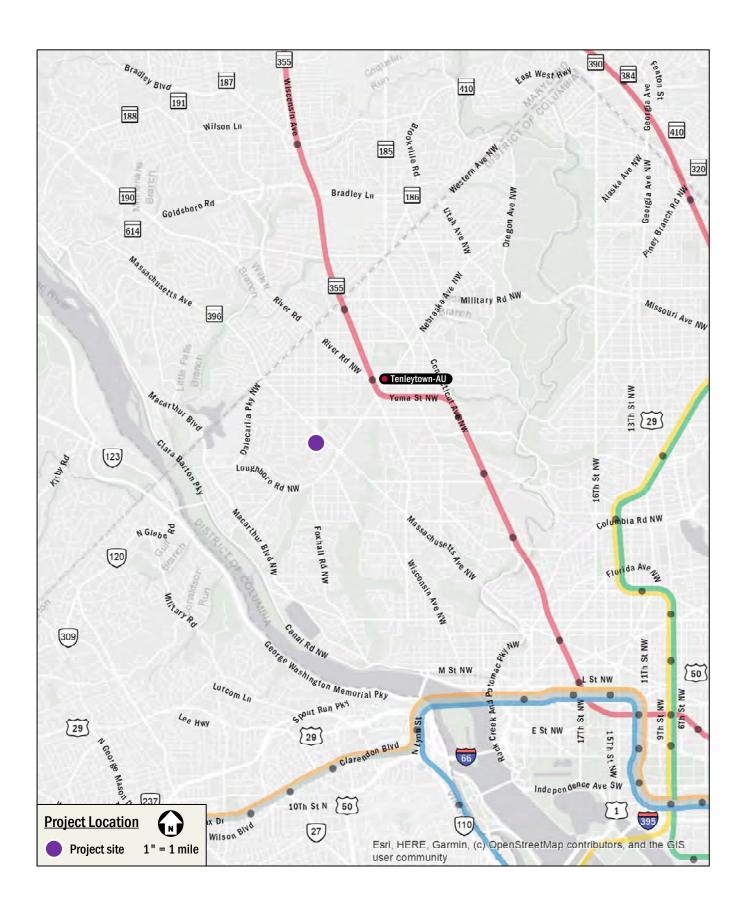
C-28 28 CTR Scoping Form Version 1.1 – June 2019

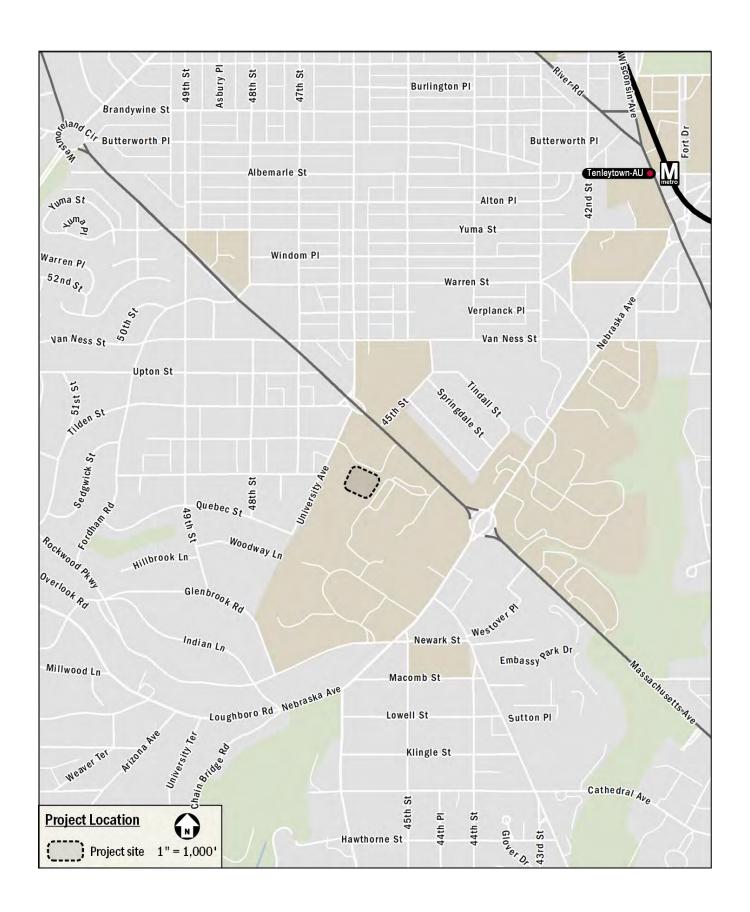
_	Appendix C - Scoping Information	
TDM Plan) and those being proposed and committed to by the Applicant. Elements of the TDM Plan included in CTR must be broken down by land use and user (i.e., employee, faculty, resident, visitor, etc.).		
Performance	Noted.	Acknowledged
Monitoring Plan		GS Response: Noted.
(PMP) DDOT may require a PMP in situations where anticipated vehicle trips are large in magnitude, unpredictable, or necessitate a vehicle trip cap. Typically, this is required for schools expected to have a significant amount of single occupancy vehicle trips or very large developments. The monitoring plan will		
Ine monitoring plan will establish thresholds for new trips a project can generate, define post-completion evaluation criteria and methodology, determine the frequency of reporting, and establish potential remediating measures (e.g., adjust trip caps or implement additional TDM strategies). Document any existing performance monitoring Plans in effect and any proposed changes.		

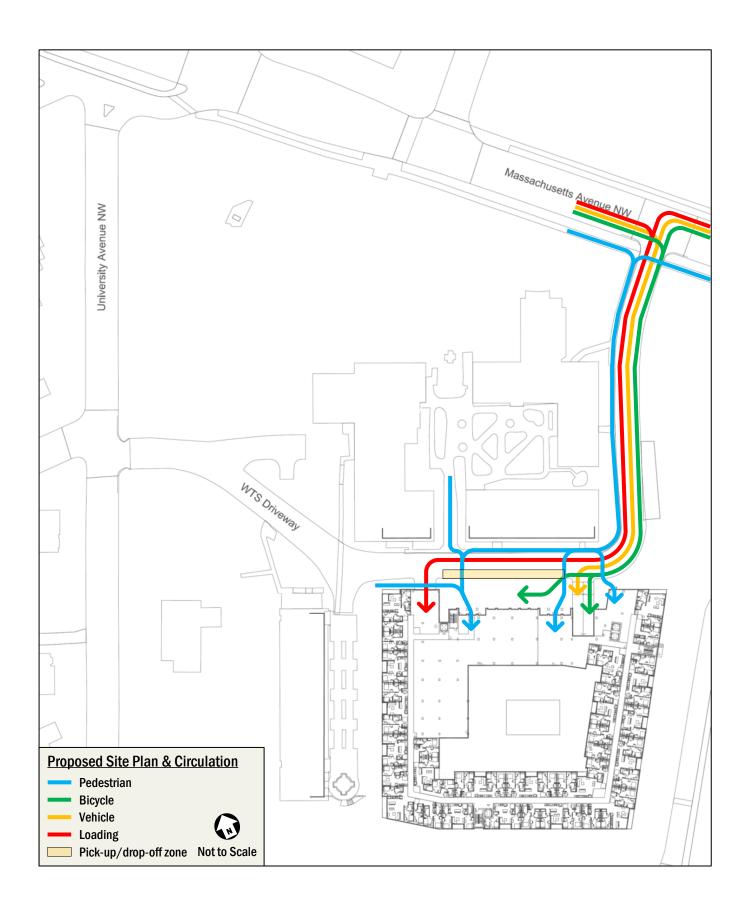
Appendix C - Scoping Information

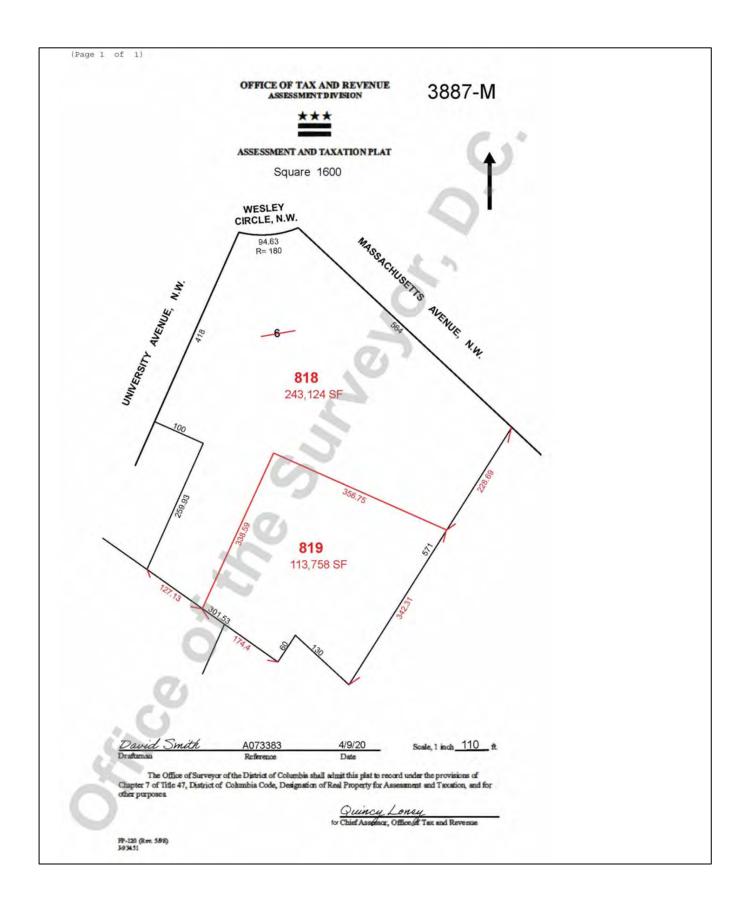
Roadway	There are no proposed roadway operational or geometric changes; therefore this section is not applicable.	Acknowledged
Operational and		GS Response: Noted.
Geometric		
Changes		
Describe all proposed roadway operational and geometric changes in CTR with supporting analysis and warrants in the study appendix. Detail must be provided on any ROW implications of proposed mitigations. All proposed changes in traffic control must be conducted following the procedures outlined in the Manual of Uniform Traffic Control Devices (MUTCD). Note any preliminary ideas being considered.		

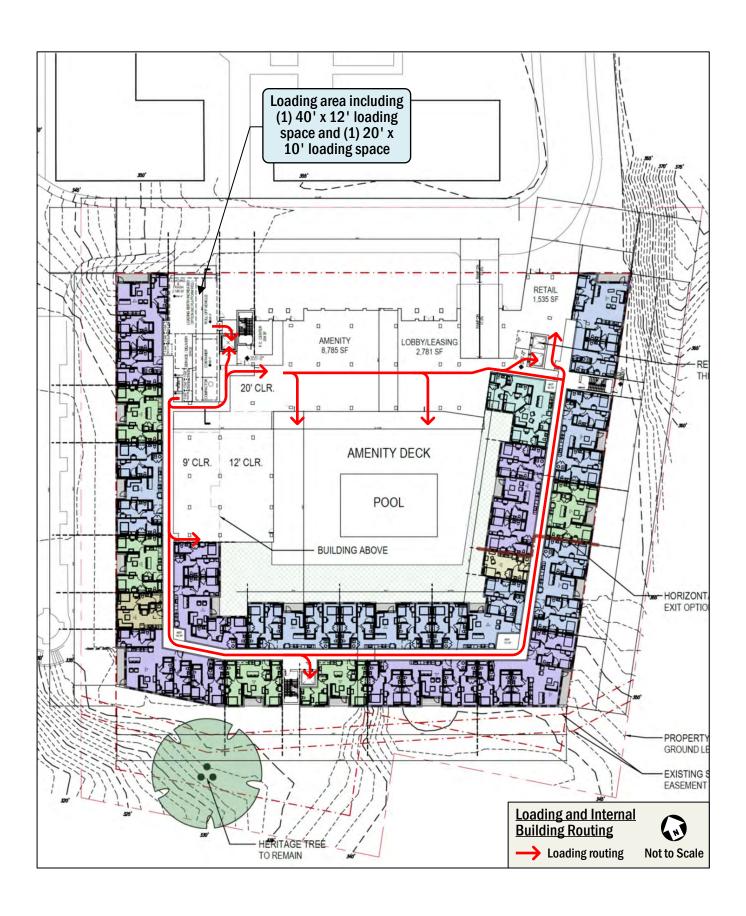
Section 6: ADDITIONAL TOPICS FOR DISCUSSION DURING SCOPING

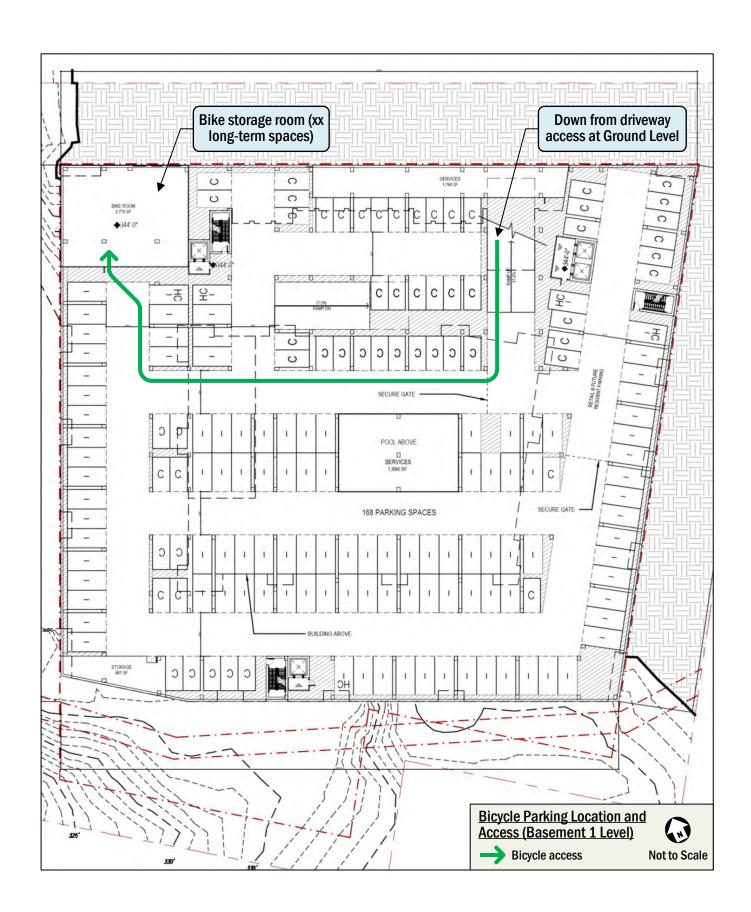

CATEGORY & GUIDELINES	CONSULTANT PROPOSAL	DDOT COMMENTS
ANC Discussions	Some University Avenue NW residents oppose the sidewalk recommended in the Rock Creek West Livability	Acknowledged
and Feedback	Study. DDOT is aware of this.	GS Response: Noted.
Provide an update on the status of Community Benefits Agreement, any ANC concerns, or other concerns expressed by the community.		
Miscellaneous	N/A	Acknowledged
Items for		GS Response: Noted.
Discussion		
These items could include relevant on-going discussions with other agencies and stakeholders or seeking direction other types of analyses to be included		

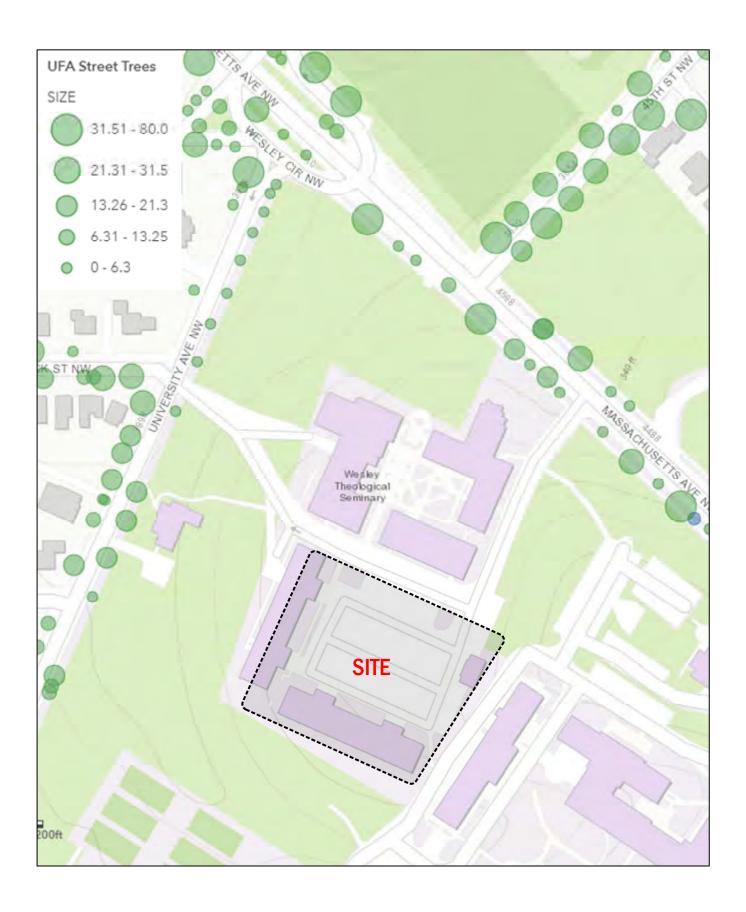

C-30


30


Landmark Housing at Wes	sley Theological Seminary – 7/28/21 Appendix C - Scoping Information	
(i.e., traffic calming		
proposal, TOPP, TMP).		


31 CTR Scoping Form Version 1.1 – June 2019





Mode Split Assumptions

Residential Component

Pertinent Mode Split data from other sources:

		Mode						
Information Source	SOV	Carpool	Rideshare	Transit	Bike	Walk	Telecommute	Other
CTPP - TAZ Residents (TAZ 10094)	17%	8%		22%	2%	30%	18%	3%
State of the Commute 2016 (of District residents)	35%	4%		42%	16%		3%	
AU 2021 Campus Plan - student commute to campus	14%	2%	4%	50%	28%			2%
WMATA Ridership Survey Table 9 (average for <i>Friendship Heights Station</i> <i>Area</i>)	55	5%		35%	10)%		

Mode Split assumed in TIS:

_	Mode							
Land Use	Drive	Transit	Bike	Walk	Telecommute/Other			
Residential Mode Split	20%	50%	5%	25%				

Notes: Mode split based primarily on census data and mode split for AU students commuting to campus, adjusted for the project site being located on campus.

Retail Component

Pertinent Mode Split data from other sources:

tilicit Woode Split data Holli otilei 30dices												
				M	ode							
Information Source	SOV	Carpool	Rideshare	Transit	Bike	Walk	Telecommute	Other				
CTPP - TAZ Workers	40%	7%		22%	2%	22%	6%	1%				
(TAZ 10094)	40%	770		22%	2%	22%	0%	1%				
State of the Commute 2019	220/	C0/		F20/	7	%						
(of DC Workers)	32%	32% 6%		53% 7		70						
WMATA Ridership Survey Table 15		36%		37%	27%							
(Average Among Retail Sites)		30%		3/%		7 70						

Mode Split assumed in TIS:

	Mode							
Land Use	Drive	Transit	Bike	Walk	Telecommute/Other			
Retail	50%	25%	5%	20%				

Residential Trip Generation (ITE Land Use 225 fitted curve used for AM trips)

600 net new bedrooms

Step 1: Base trip generation using ITEs' *Trip Generation*

Land Use	Land Use Code	Land Use Code	Quantity (x)		AM P	eak Hour		PM Pea	k Hour	Daily
Land Ose	Land Ose Code	Qualitity (x)	In	Out	Total	In	Out	Total	Total	
Apartments	225	600 br	27 veh/hr	38 veh/hr	65 veh/hr	74 veh/hr	73 veh/hr	147 veh/hr	1872 veh	
	Ca	lculation Details:	41%	59%	=0.1X+5.31	50%	50%	=0.24X+2.9	=3.03X+54.26	

Step 2: Convert to people per hour, before applying mode splits

Land Use	People/Car		AM P	eak Hour		Daily		
Land Ose	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total
Apartments	1.18 ppl/veh	32 ppl/hr	45 ppl/hr	77 ppl/hr	87 ppl/hr	86 ppl/hr	173 ppl/hr	2209 ppl

Step 3: Split between modes, per assumed Mode Splits

				AM D	eak Hour		PM Pea	k Hour	Daily	
Land Use	Mode	Split		AWI FERK HOUI			FIVIFEAKTIOUI			
24114 050		opt	In	Out	Total	In	Out	Total	Total	
Apartments	Auto	20%	6 ppl/hr	9 ppl/hr	15 ppl/hr	17 ppl/hr	18 ppl/hr	35 ppl/hr	442 ppl	
Apartments	Transit	50%	16 ppl/hr	23 ppl/hr	39 ppl/hr	44 ppl/hr	43 ppl/hr	87 ppl/hr	1105 ppl	
Apartments	Bike	5%	2 ppl/hr	2 ppl/hr	4 ppl/hr	4 ppl/hr	5 ppl/hr	9 ppl/hr	110 ppl	
Apartments	Walk	25%	8 ppl/hr	11 ppl/hr	19 ppl/hr	22 ppl/hr	21 ppl/hr	43 ppl/hr	552 ppl	

Step 4: Convert auto trips back to vehicles/hour

Land Use	People/Car		AM P	eak Hour		Daily		
Land Ose	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total
Apartments	1.18 ppl/veh	5 veh/hr	8 veh/hr	13 veh/hr	14 veh/hr	16 veh/hr	30 veh/hr	375 veh

Trip Gen Summary for Residential

Mode	AM Peak Hour				Daily		
Wode	In	Out	Total	In	Out	Total	Total
Auto	5 veh/hr	8 veh/hr	13 veh/hr	14 veh/hr	16 veh/hr	30 veh/hr	375 veh
Transit	16 ppl/hr	23 ppl/hr	39 ppl/hr	44 ppl/hr	43 ppl/hr	87 ppl/hr	1105 ppl
Bike	2 ppl/hr	2 ppl/hr	4 ppl/hr	4 ppl/hr	5 ppl/hr	9 ppl/hr	110 ppl
Walk	8 ppl/hr	11 ppl/hr	19 ppl/hr	22 ppl/hr	21 ppl/hr	43 ppl/hr	552 ppl

Residential Trip Generation (ITE Land Use 225 average rate used for PM trips)

600 net new bedrooms

Step 1: Base trip generation using ITEs' *Trip Generation*

Land Use	Land Use Code	Quantity (x)		AM P	eak Hour		k Hour	Daily	
Land Ose	Land Ose Code	Qualitity (x)	In	Out	Total	In	Out	Total	Total
Apartments	225	600 br	30 veh/hr	42 veh/hr	72 veh/hr	75 veh/hr	75 veh/hr	150 veh/hr	1890 veh
	Са	lculation Details:	41%	59%	=0.12X	50%	50%	=0.25X	=3.15X

Step 2: Convert to people per hour, before applying mode splits

	People/Car	, ,	Λ N / D /	eak Hour	Daily			
Land Use	• •					PM Pea		- /
	(from 2017 NHTS, Table 16)	ln	Out	Total	In	Out	Total	Total
Apartments	1.18 ppl/veh	35 ppl/hr	50 ppl/hr	85 ppl/hr	89 ppl/hr	88 ppl/hr	177 ppl/hr	2230 ppl

Step 3: Split between modes, per assumed Mode Splits

Land Hear	Mode Split			AM Peak Hour			PM Peak Hour			
Land Use	Mode	Split	In	Out	Total	In	Out	Total	Total	
Apartments	Auto	20%	7 ppl/hr	10 ppl/hr	17 ppl/hr	18 ppl/hr	17 ppl/hr	35 ppl/hr	446 ppl	
Apartments	Transit	50%	18 ppl/hr	25 ppl/hr	43 ppl/hr	45 ppl/hr	44 ppl/hr	89 ppl/hr	1115 ppl	
Apartments	Bike	5%	2 ppl/hr	2 ppl/hr	4 ppl/hr	4 ppl/hr	5 ppl/hr	9 ppl/hr	112 ppl	
Apartments	Walk	25%	9 ppl/hr	12 ppl/hr	21 ppl/hr	22 ppl/hr	22 ppl/hr	44 ppl/hr	558 ppl	

Step 4: Convert auto trips back to vehicles/hour

Land Use	People/Car		AM P	eak Hour		Daily		
Land Ose	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total
Apartments	1.18 ppl/veh	6 veh/hr	8 veh/hr	14 veh/hr	15 veh/hr	15 veh/hr	30 veh/hr	378 veh

Trip Gen Summary for Residential

Mode	AM Peak Hour				Daily		
	In	Out	Total	In	Out	Total	Total
Auto	6 veh/hr	8 veh/hr	14 veh/hr	15 veh/hr	15 veh/hr	30 veh/hr	378 veh
Transit	18 ppl/hr	25 ppl/hr	43 ppl/hr	45 ppl/hr	44 ppl/hr	89 ppl/hr	1115 ppl
Bike	2 ppl/hr	2 ppl/hr	4 ppl/hr	4 ppl/hr	5 ppl/hr	9 ppl/hr	112 ppl
Walk	9 ppl/hr	12 ppl/hr	21 ppl/hr	22 ppl/hr	22 ppl/hr	44 ppl/hr	558 ppl

Retail Trip Generation

1,535 sf

Step 1: Base trip generation using ITEs' Trip Generation

Land Use Lan	Land Use Code	Quantity (x)	AM Peak Hour				Daily		
	Lariu Ose Code	Qualitity (x)	In	Out	Total	In	Out	Total	Total
Retail	820	1,535 sf	1 veh/hr	0 veh/hr	1 veh/hr	3 veh/hr	3 veh/hr	6 veh/hr	58 veh
	Ca	Iculation Details:	62%	38%	=0.94(X/1000)	48%	52%	=3.81(X/1000)	=37.75(X/1000)

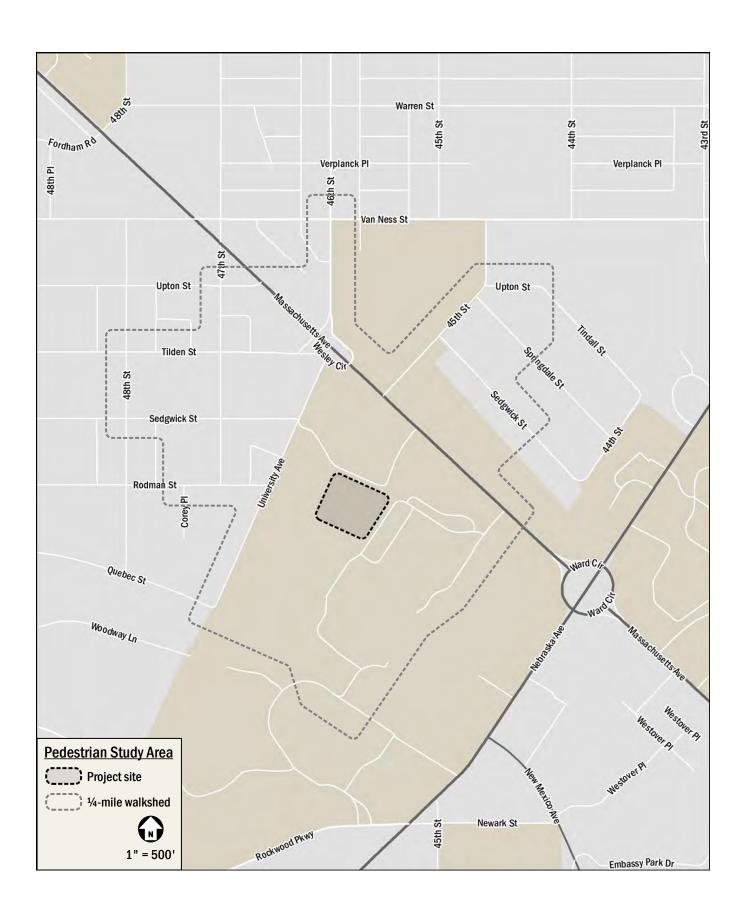
Step 2: Convert to people per hour, before applying mode splits

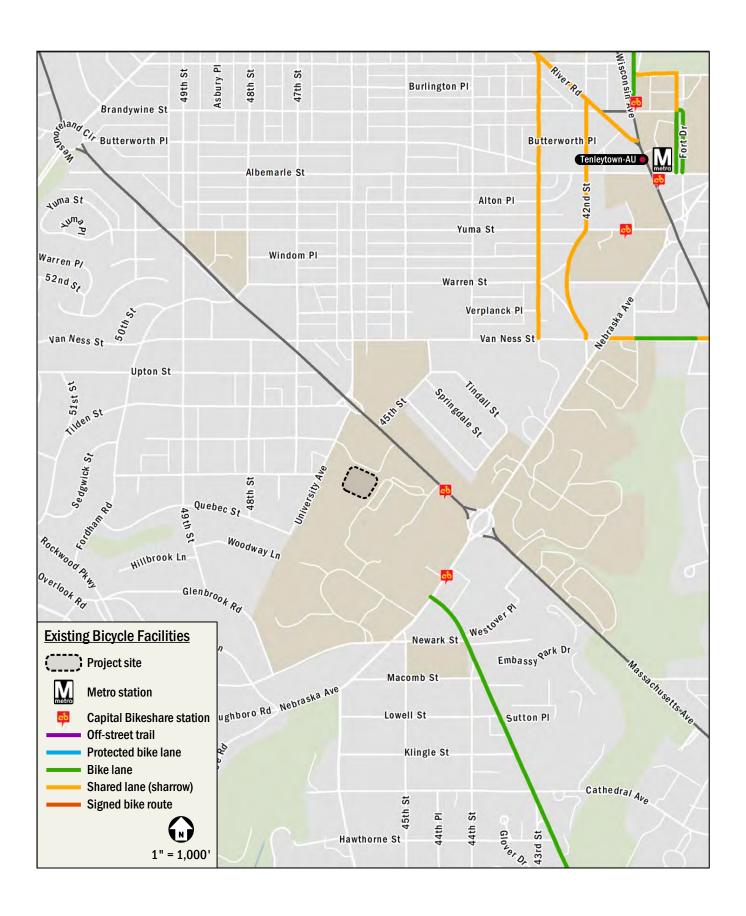
Land Use	People/Car	AM Peak Hour				Daily		
Land Use	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total
Retail	1.82 ppl/veh	2 ppl/hr	0 ppl/hr	2 ppl/hr	5 ppl/hr	6 ppl/hr	11 ppl/hr	106 ppl

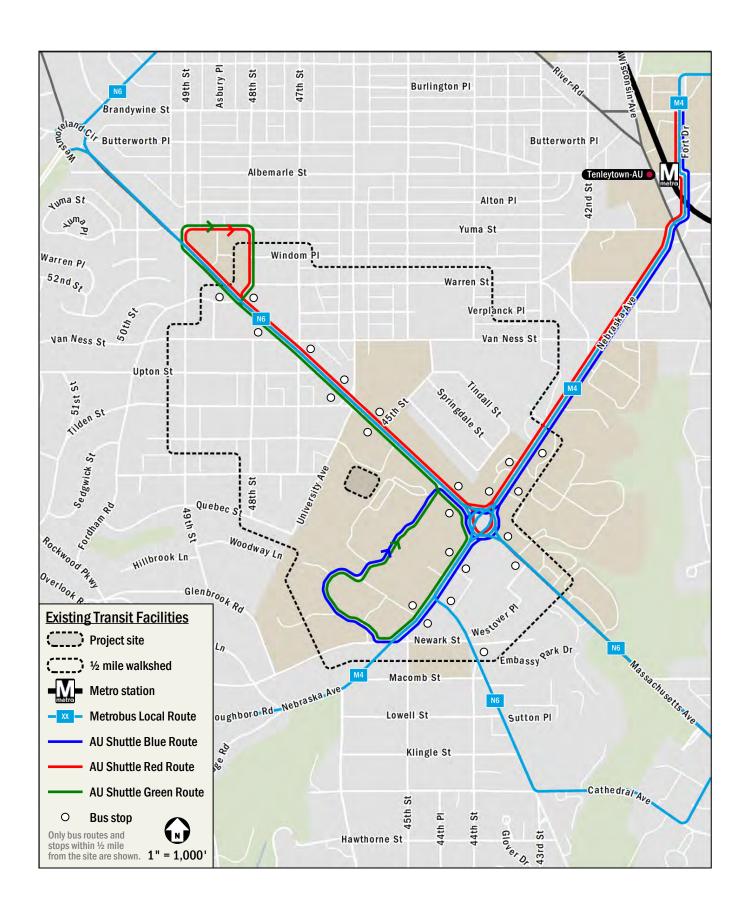
Step 3: Split between modes, per assumed Mode Splits

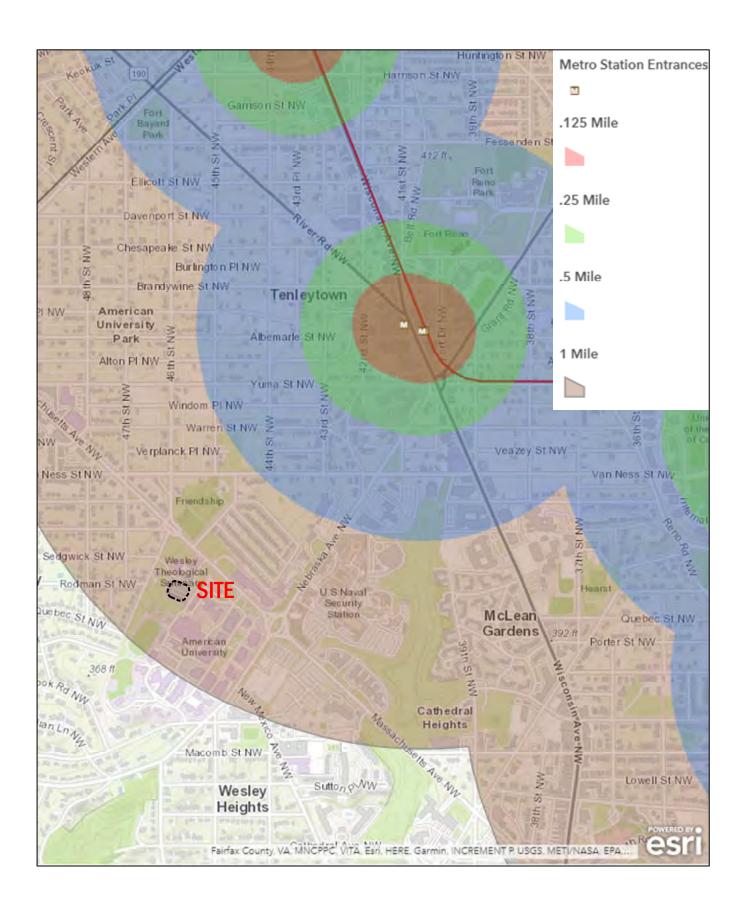
Land Use	Mode	Split	AM Peak Hour				Daily		
	Wiode		In	Out	Total	In	Out	Total	Total
Retail	Auto	50%	1 ppl/hr	0 ppl/hr	1 ppl/hr	3 ppl/hr	3 ppl/hr	6 ppl/hr	53 ppl
Retail	Transit	25%	1 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	2 ppl/hr	3 ppl/hr	27 ppl
Retail	Bike	5%	0 ppl/hr	0 ppl/hr	0 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	5 ppl
Retail	Walk	20%	0 ppl/hr	0 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	2 ppl/hr	21 ppl

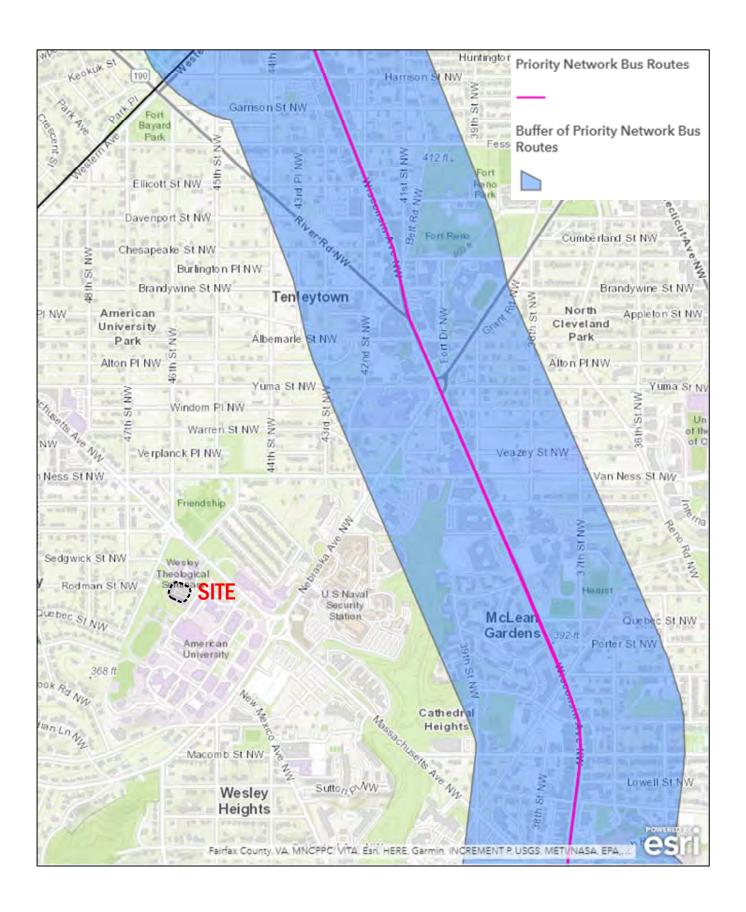
Step 4: Convert auto trips back to vehicles/hour

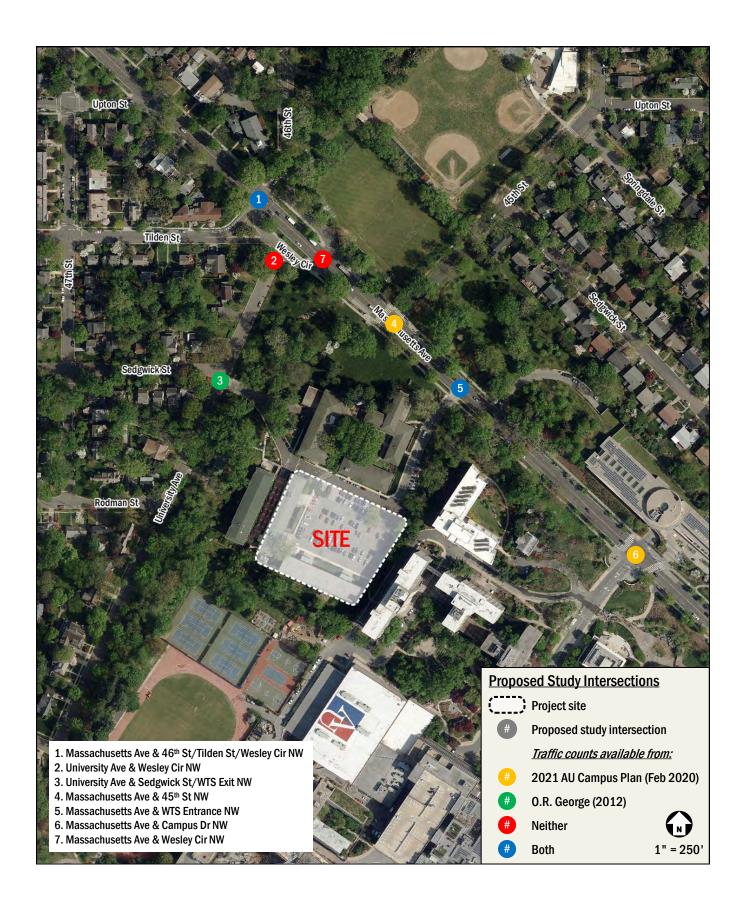

Land Use	People/Car	AM Peak Hour				Daily		
Land Use	(from 2017 NHTS, Table 16)	In	Out	Total	In	Out	Total	Total
Retail	1.82 ppl/veh	1 veh/hr	0 veh/hr	1 veh/hr	2 veh/hr	1 veh/hr	3 veh/hr	29 veh

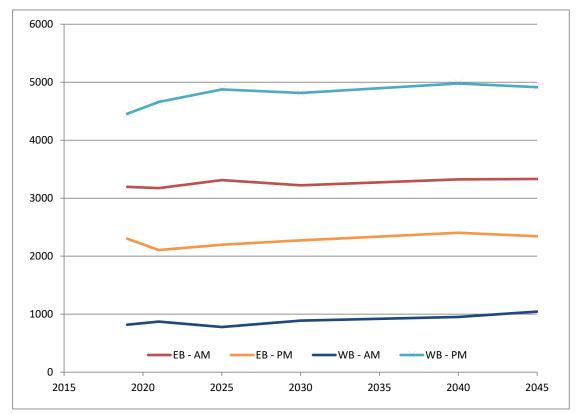

Trip Gen Summary for Retail


Mode	AM Peak Hour				Daily		
	In	Out	Total	In	Out	Total	Total
Auto	1 veh/hr	0 veh/hr	1 veh/hr	2 veh/hr	1 veh/hr	3 veh/hr	29 veh
Transit	1 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	2 ppl/hr	3 ppl/hr	27 ppl
Bike	0 ppl/hr	0 ppl/hr	0 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	5 ppl
Walk	0 ppl/hr	0 ppl/hr	0 ppl/hr	1 ppl/hr	1 ppl/hr	2 ppl/hr	21 ppl


Appendix C - Scoping Information


Mode	Mode Split	Land Use	AM Peak Hour			PM Peak Hour			
wode		Land Use	ln	Out	Total	ln	Out	Total	
A t -	20%	Residential	5	8	13	15	15	30	
Auto (veh/hr)	50%	Retail	1	0	1	2	1	3	
(venini)		Total	6	8	14	17	16	33	
Transit (ppl/hr)	50%	Residential	16	23	39	45	44	89	
	25%	Retail	1	0	1	1	2	3	
(PPI/III)		Total	17	23	40	46	46	92	
D.I	5%	Residential	2	2	4	4	5	9	
Bike (ppl/hr)	5%	Retail	0	0	0	0	1	1	
(pp////)		Total	2	2	4	4	6	10	
\A/-II-	25%	Residential	8	11	19	22	22	44	
Walk (ppl/hr)	20%	Retail	0	0	0	1	1	2	
		Total	8	11	19	23	23	46	





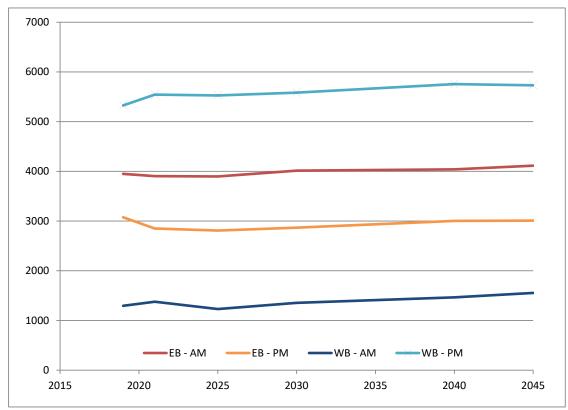
Growth Rate Information & Assumptions

Massachusetts Ave NW west of Wesley Cir

MWCOG Model Volumes (v2.3.78)

Direction/Period	2019	2021	2025	2030	2040	2045
EB - AM	3195	3174	3312	3221	3323	3332
EB - PM	2303	2106	2198	2274	2404	2344
WB - AM	819	871	779	890	952	1045
WB - PM	4455	4660	4875	4815	4978	4914

Massachusetts Ave NW west of Wesley Cir


Historical DDOT AADTs in thousands

Location	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Massachusetts Ave NW west of Wesley Cir	17.5	16.9	17	18.6	18.7	19	19.2	19.7	19.9	20.4
Growth per year since:	2009 1.5%	2012 1.3%	2015 1.5%							

Growth Rate Information & Assumptions Massachusetts Ave NW btwn Wesley Cir and 45th St

MWCOG Model Volumes (v2.3.78)

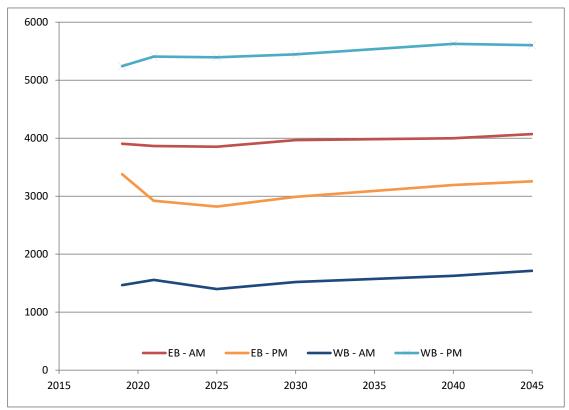
Direction/Period	2019	2021	2025	2030	2040	2045
EB - AM	3949	3904	3897	4015	4039	4114
EB - PM	3076	2851	2809	2867	3002	3008
WB - AM	1294	1378	1230	1354	1464	1554
WB - PM	5326	5544	5528	5582	5755	5731

Massachusetts Ave NW btwn Wesley Cir and 45th St

-0.9%

-0.7%

1.2%


Historical DDOT AADTs in thousands

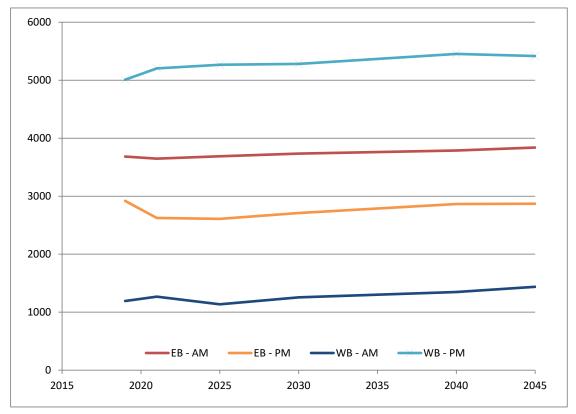
Location Massachusetts Ave NW btwn Wesley Cir and	2009 22.9	2010 22.1	2011 22.2	2012 22	2013 22.1	2014 19.7	2015 20	2016 20.8	2017 20.9	2018 21.0
Growth per year since:	2009	2012	2015							

Growth Rate Information & Assumptions Massachusetts Ave NW east of 45th St

MWCOG Model Volumes (v2.3.78)

Direction/Period	2019	2021	2025	2030	2040	2045
EB - AM	3905	3865	3853	3968	3998	4071
EB - PM	3379	2921	2821	2988	3192	3256
WB - AM	1467	1556	1399	1521	1627	1714
WB - PM	5243	5408	5394	5446	5627	5603

Massachusetts Ave NW east of 45th St


Historical DDOT AADTs in thousands

Location	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Massachusetts Ave NW east of 45th St	22.9	22.1	22.2	22	22.1	19.7	20	20.8	20.9	21.0
Growth per year since:	2009 -0.9%	2012 -0.7%	2015 1.2%							

Massachusetts Ave NW aggregate

MWCOG Model Volumes (v2.3.78)

Direction/Period	2019	2021	2025	2030	2040	2045
EB - AM	3683	3648	3687	3735	3787	3839
EB - PM	2919	2626	2609	2710	2866	2869
WB - AM	1193	1268	1136	1255	1348	1438
WB - PM	5008	5204	5266	5281	5453	5416

Year of data collection: 2020 Project completion date: 2021

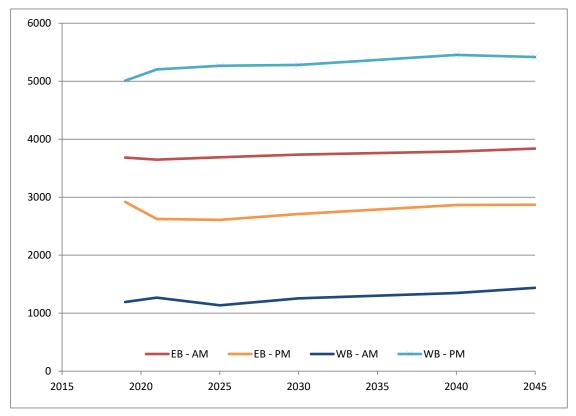
Direction/Period Growth per year between 2020 & 2021

EB - AM	-0.48%
EB - PM	-5.16%
WB - AM	3.09%
WB - PM	1.94%

Massachusetts Ave NW aggregate

Historical DDOT AADTs in thousands

Location	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Massachusetts Ave NW	21.1	20.4	20.5	20.9	21.0	19.5	19.7	20.4	20.6	20.8
aggregate										


Growth per year since: 2009 2012 2015 -0.1% 0.0% 1.3%

	Per year	Total
	btwn	btwn
	2020 &	2020 &
Direction/Period	2021	2021
EB - AM	0.10%	0.10%
EB - PM	0.10%	0.10%
WB - AM	2.00%	2.00%
WB - PM	0.50%	0.50%

Massachusetts Ave NW aggregate

MWCOG Model Volumes (v2.3.78)

Direction/Period	2019	2021	2025	2030	2040	2045
EB - AM	3683	3648	3687	3735	3787	3839
EB - PM	2919	2626	2609	2710	2866	2869
WB - AM	1193	1268	1136	1255	1348	1438
WB - PM	5008	5204	5266	5281	5453	5416

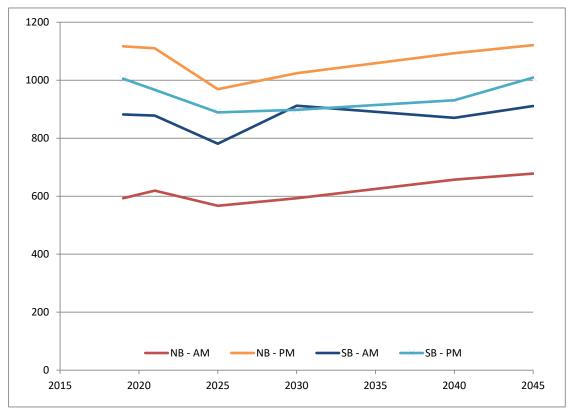
Year of data collection: 2021 Project completion date: 2024

Direction/Period Growth per year between 2021 & 2024

EB - AM	0.27%
EB - PM	-0.16%
WB - AM	-2.72%
WB - PM	0.29%

Massachusetts Ave NW aggregate

Historical DDOT AADTs in thousands


Location	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Massachusetts Ave NW	21.1	20.4	20.5	20.9	21.0	19.5	19.7	20.4	20.6	20.8
aggregate										

Growth per year since: 2009 2012 2015 -0.1% 0.0% 1.3%

	Per year	Total
	btwn	btwn
	2021 &	2021 &
Direction/Period	2024	2024
EB - AM	0.30%	0.90%
EB - PM	0.10%	0.30%
WB - AM	0.10%	0.30%
WB - PM	0.30%	0.90%

MWCOG Model Volumes (v2.3.78)

Direction/Period	2019	2021	2025	2030	2040	2045
NB - AM	593	619	567	593	657	678
NB - PM	1117	1110	969	1024	1093	1121
SB - AM	882	878	781	912	870	911
SB - PM	1005	967	889	898	931	1009

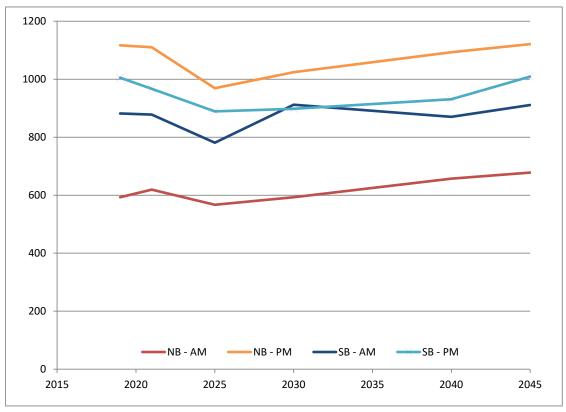
Year of data collection: 2020 Project completion date: 2021

Direction/Period Growth per year between 2020 & 2021

NB - AM	2.17%
NB - PM	-0.31%
SB - AM	-0.23%
SB - PM	-1.91%

Historical DDOT AADTs in thousands

Location	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
46th St NW	2.3	2.2	2.2	2.2	2.2	2.6	2.7	2.8	2.8	2.8


Growth per year since: 2009 2012 2015

2.0% 3.5% 0.9%

	Per year btwn	Total btwn
	2020 &	2020 &
Direction/Period	2021	2021
NB - AM	2.00%	2.00%
NB - PM	0.10%	0.10%
SB - AM	0.10%	0.10%
SB - PM	0.10%	0.10%

MWCOG Model Volumes (v2.3.78)

Direction/Period	2019	2021	2025	2030	2040	2045
NB - AM	593	619	567	593	657	678
NB - PM	1117	1110	969	1024	1093	1121
SB - AM	882	878	781	912	870	911
SB - PM	1005	967	889	898	931	1009

Year of data collection: 2021 Project completion date: 2024

Direction/Period Growth per year between 2021 & 2024

 NB - AM
 -2.17%

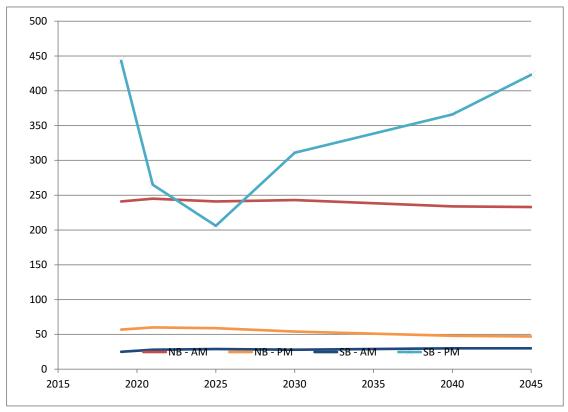
 NB - PM
 -3.34%

 SB - AM
 -2.88%

 SB - PM
 -2.08%

Historical DDOT AADTs in thousands

Location	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
46th St NW	2.3	2.2	2.2	2.2	2.2	2.6	2.7	2.8	2.8	2.8


Growth per year since: 2009 2012 2015

2.0% 3.5% 0.9%

	Per year	Total
	btwn	btwn
	2021 &	2021 &
Direction/Period	2024	2024
NB - AM	0.10%	0.30%
NB - PM	0.10%	0.30%
SB - AM	0.10%	0.30%
SB - PM	0.10%	0.30%

MWCOG Model Volumes (v2.3.78)

Direction/Period	2019	2021	2025	2030	2040	2045
NB - AM	241	245	241	243	234	233
NB - PM	57	60	59	54	48	47
SB - AM	25	28	29	28	30	30
SB - PM	443	265	206	311	366	423

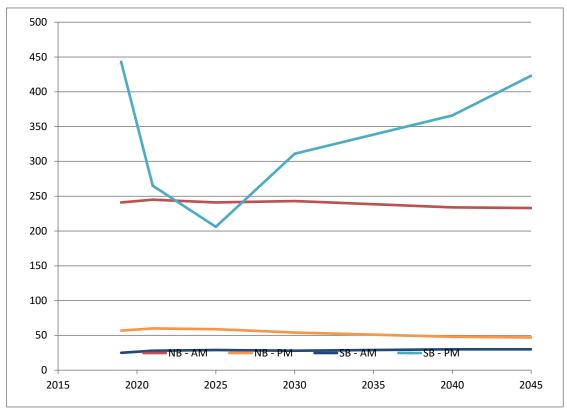
Year of data collection: 2020 Project completion date: 2021

Direction/Period Growth per year between 2020 & 2021

NB - AM	0.83%
NB - PM	2.60%
SB - AM	5.83%
SB - PM	-22.66%

Historical DDOT AADTs in thousands

Location 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018


45th St NW

Growth per year since: 2009 2012 2015

	Per year btwn 2020 &	Total btwn 2020 &
Direction/Period	2021	2021
NB - AM	0.50%	0.50%
NB - PM	0.50%	0.50%
SB - AM	2.00%	2.00%
SB - PM	0.10%	0.10%

MWCOG Model Volumes (v2.3.78)

Direction/Period	2019	2021	2025	2030	2040	2045
NB - AM	241	245	241	243	234	233
NB - PM	57	60	59	54	48	47
SB - AM	25	28	29	28	30	30
SB - PM	443	265	206	311	366	423

Year of data collection: 2021 Project completion date: 2024

Direction/Period Growth per year between 2021 & 2024

 NB - AM
 -0.41%

 NB - PM
 -0.42%

 SB - AM
 0.88%

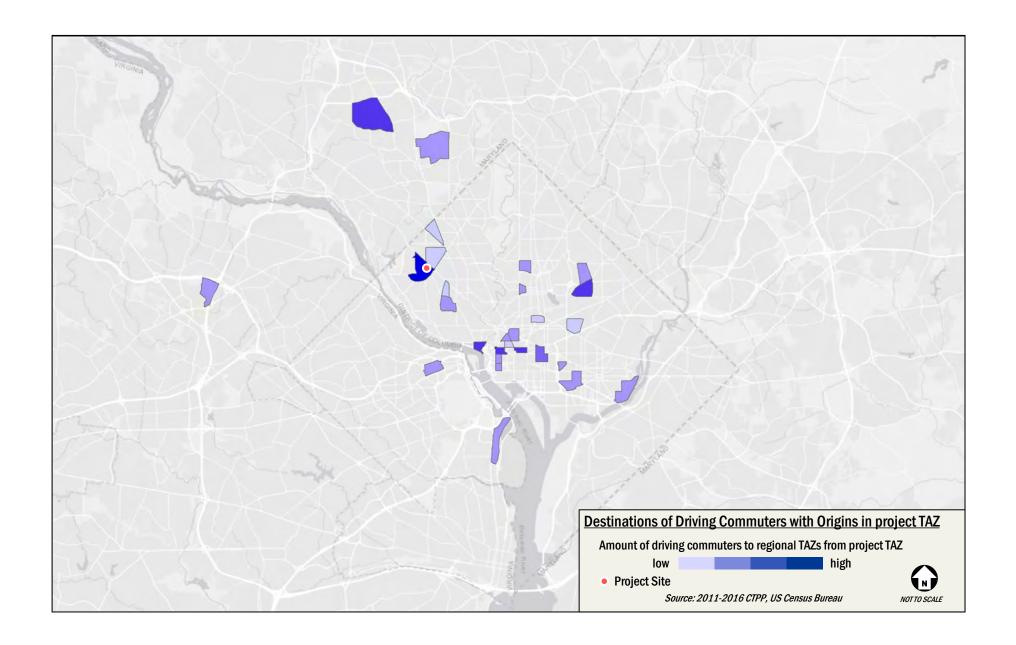
 SB - PM
 -6.10%

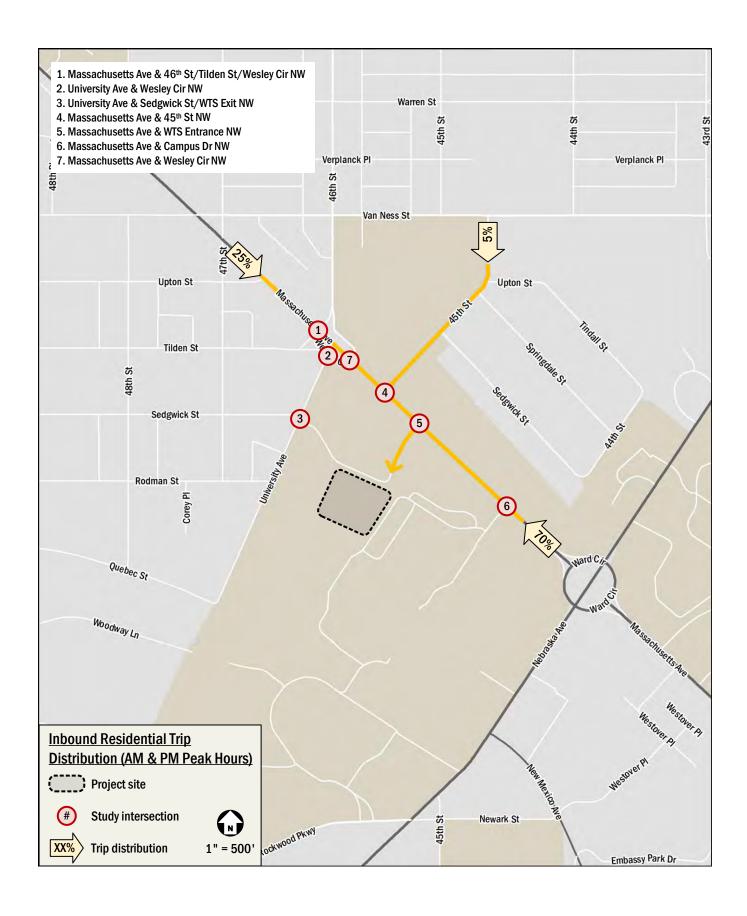
Historical DDOT AADTs in thousands

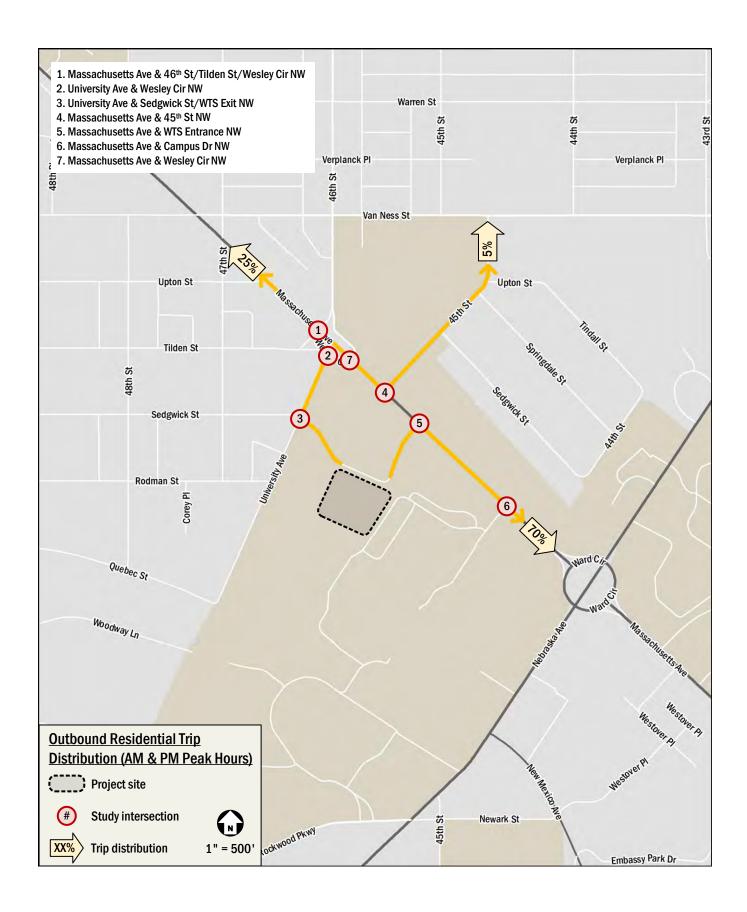
Location 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

45th St NW

Growth per year since: 2009 2012 2015


	Per year	Total
	btwn	btwn
	2021 &	2021 &
Direction/Period	2024	2024
NB - AM	0.10%	0.30%
NB - PM	0.10%	0.30%
SB - AM	0.90%	2.72%
SB - PM	0.10%	0.30%


Roadway	Dir.	_	d Annual te Between d 2021 ¹	Growth	ed Total Between nd 2021	Growth Ra	d Annual te Between d 2024 ²	Growth	ed Total Between nd 2024
Massachusetts Ave NW		AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
	EB	0.10%	0.10%	0.10%	0.10%	0.30%	0.10%	0.90%	0.30%
Ave NW	WB	2.00%	0.50%	2.00%	0.50%	0.10%	0.30%	0.30%	0.90%
Tilden St NW	EB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
riiden St NVV	WB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
46th St NW	NB	2.00%	0.10%	2.00%	0.10%	0.10%	0.10%	0.30%	0.30%
40111 St 1979	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
University Ave	NB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
NW ³	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
45th St NW	NB	0.50%	0.50%	0.50%	0.50%	0.10%	0.10%	0.30%	0.30%
45th 5t NVV	SB	2.00%	0.10%	2.00%	0.10%	0.90%	0.10%	2.72%	0.30%
Compus Dr NIM	NB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%
Campus Dr NW	SB	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%


¹ These rates were applied to volumes recorded in February 2020 that were used to establish 2021 existing conditions. Rates are based on MWCOG's currently adopted regional transportation model for this time period.

² These rates were applied to volumes grown from 2021 existing conditions. Rates are based on MWCOG's currently adopted regional transportation model for this time period.

³ Study intersection #3 (University Ave & Sedgwick St/WTS Exit NW) only has available traffic counts from 2012, not February 2020 like the other study intersections. Therefore, to establish 2021 Existing Conditions, annual growth rates of 0.10% will be applied to the northbound and southbound volumes of University Ave NW at this intersection for every year between 2012 and 2021, totaling 0.90% for each direction.

D. Vehicle Level of Service Definitions

A. Level of Service Definitions

All capacity analyses are based on the procedures specified by the Transportation Research Board, Special Report 209: Highway Capacity Manual (HCM), 2000. Levels of service (LOS) range from A to F. A brief description of each level of service for signalized and unsignalized intersections is provided below.

SIGNALIZED INTERSECTIONS

Level of service is based upon the traffic volume present in each lane on the roadway, the capacity of each lane at the intersection and the delay associated with each directional movement. The levels of service for signalized intersections are defined below:

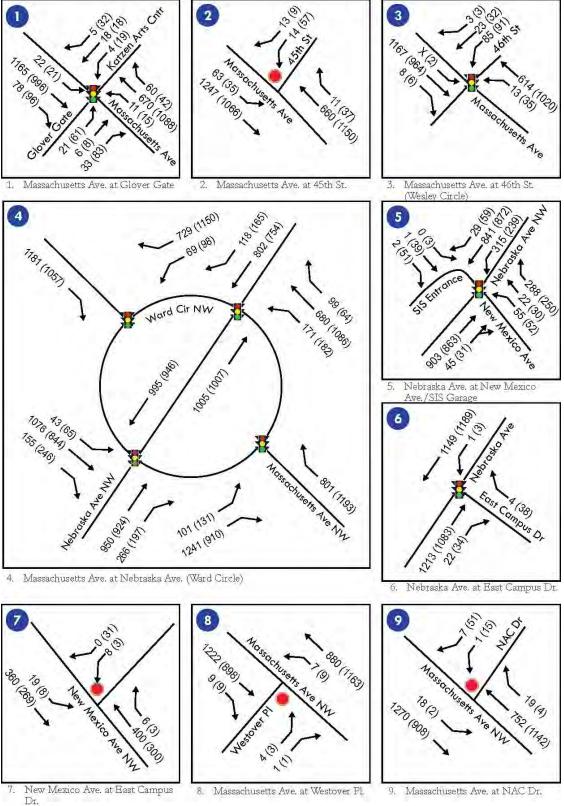
- LOS A describes operations with very low average delay per vehicle, i.e., less than 10.0 seconds. This occurs when progression is
 extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop. Short signal cycle lengths may
 also contribute to low delay.
- LOS B describes operations with average delay in the range of 10.1 to 20.0 seconds per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.
- LOS C describes operations with delay in the range of 20.1 to 35.0 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level although many still pass through the intersection without stopping. This is generally considered the lower end of the range of the acceptable level of service in rural areas.
- LOS D describes operations with delay in the range of 35.1 to 55.0 seconds per vehicle. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, and/or high traffic volumes as compared to the roadway capacity. Many vehicles are required to stop and the number of vehicles that do not have to stop declines. Individual signal cycle failures, where all waiting vehicles do not clear the intersection during a single green time, are noticeable. This is generally considered the lower end of the range of the acceptable level of service in urban areas.
- LOS E describes operations with delay in the range of 55.1 to 80.0 seconds per vehicle. These higher delay values generally indicate poor progression, long cycle lengths, and high traffic volumes. Individual cycle failures are frequent occurrences. LOS E has been set as the limit of acceptable conditions.
- LOS F describes operations with average delay in excess of 80.0 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with over-saturation, i.e., when traffic arrives at a flow rate that exceeds the capacity of the intersection. It may also occur at high volumes with many individual cycle failures. Poor progression and long cycle lengths may also contribute to such delays.

UNSIGNALIZED INTERSECTIONS

At an unsignalized intersection, the major street through traffic and right turns are assumed to operate unimpeded and therefore receive no level of service rating. The level of service for the minor street and the major street left turn traffic is dependent on the volume and capacity of the available lanes, and, the number and frequency of acceptable gaps in the major street traffic to make a conflicting turn.

The level of service grade is provided for each conflicting movement at an unsignalized intersection and is based on the total average delay experienced by each vehicle. The delay includes the time it takes a vehicle to move from the back of a queue through the intersection.

The unsignalized intersection level of service analysis does not account for variations in driver behavior or the effects of nearby traffic signals. Therefore, the results from this analysis usually indicate worse levels of service than may be experienced in the field. The unsignalized intersection level of service descriptions are provided below:


- LOS A describes operations where there is very little to no conflicting traffic for a minor side street movement, i.e., an average total delay of less than 10.0 seconds per vehicle.
- LOS B describes operations with average total delay in the range of 10.1 to 15.0 seconds per vehicle.
- LOS C describes operations with average total delay in the range of 15.1 to 25.0 second per vehicle.
- LOS D describes operations with average total delay in the range of 25.1 to 35.0 seconds per vehicle.
- LOS E describes operations with average total delay in the range of 35.1 to 50.0 seconds per vehicle.
- LOS F describes operations with average total delay of 50 seconds per vehicle. LOS F exists when there are insufficient gaps of suitable size to allow a side street demand to cross safely through or enter a major street traffic stream. This level of service is generally evident from extremely long total delays experienced by side street traffic and by queuing on the minor approaches. It is important to note that LOS F may not always result in long queues but may result in adjustments to normal driver behavior.

E. 2012 Turning Movement Counts

00

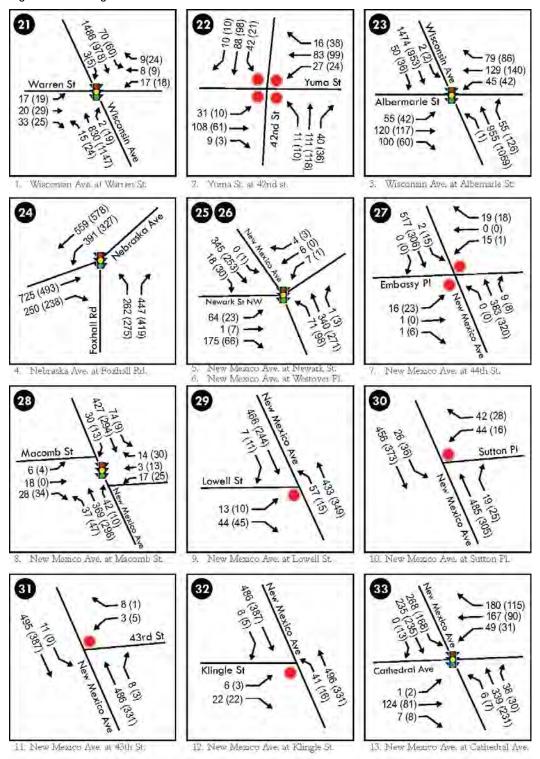
F. February 2020 Turning Movement Counts

Figure 5-1 Existing Intersection Peak Hour Traffic Volumes

839 (836) TO m 12 30(22) 36 (48) C (74) 109 (67) - 43 (64) 38 (2) 45 (51) Rockwood Pkw Newark St NW 23 33 35 (27) 00 37 (21) 36 (5) 727-30 (84) way/Newark St. 13 ø Œ 566 41 (117) 6 (20) 000 6(7) Gate 96 (110) 18 (36) 西西 9 (14) Fletcher 115 (106) 8 (21) 13/8) Van Ness St - 83 (134) 0 (0) Rockwood Pkwy 3 (2) 20 (16) -38 (5) 47th 000 160 (54) Rockwood Pkway at Fletcher Gate Massachusetts Ave. at 47th St. Massachusetts Ave. at Van Ness St. Ø Œ 18 49th St NW 0 (8) 1092 (950) - 46 (43) 735(075) 58(17) 14 (O3) 53 **←** 226 (265) 3/80) 49 (42) 16(23) 605 (1074) 503 (010) Van Ness St 75(19) 32(3) Fordham Rd NV 819 (1/38) 39 (51) 48 (22) 39 (14) 5(20) 8 (9) 56 (82) 60 (65) 251 (216) 48 (37) 64 (61) 7. Massachusetts Ave. at 48th St. 8. Massachusetts Ave. at 49th St. Wisconsin Ave. at Van Ness St. 29 (34) 1592 (1029) Θ 712 (855) œ 20 (349 (789) 243(240) 187 3 (0) 31 (1) 10 (3) Warren St 5 (10) 136(271) 734 (903)

Figure 5-2 Existing Intersection Peak Hour Traffic Volumes

11. Nebraska Avc. at Warren St.


Wisconsin Ave. at Neraska Ave.

228 (208) 198 (866) 69(61)

(Tenley Circle) South

(A) Wisconsin Ave. at Nebraska Avs. (Tenley Gircle) North

Figure 5-3 Existing Intersection Peak Hour Traffic Volumes

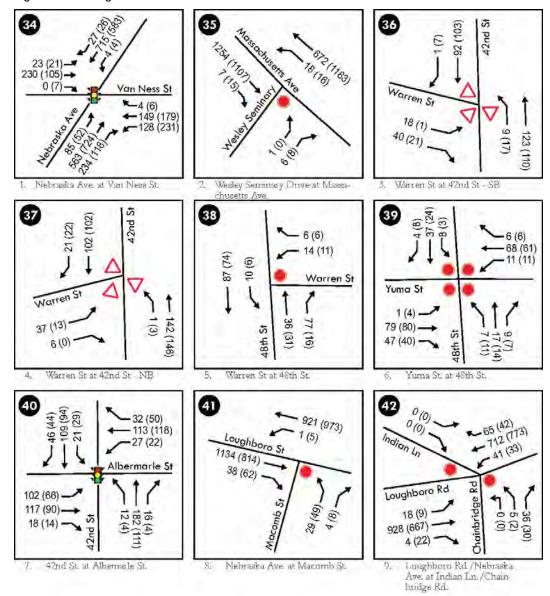


Figure 5-4 Existing Intersection Peak Hour Traffic Volumes

G. 2021 Turning Movement Counts

Gorove/Slade Associates - Multimodal Turning Movement Count Report

Project Name : Landmark Housing at Wesley Theolog

Project #: 2997-001 Location Washington DC Data Source: Gorove/Slade Associates, Inc. Analysis Period: STUDY_PERIOD

Date of Counts: Wednesday, September 22, 2021
Weather: Cloudy

06:30 AM to 09:30 AM

Volumes Displayed as: 1. Intersection Peak (vehicle)

Intersection Peak Hour (all vehicles): System Peak Hour (all vehicles): 07:3

07:30 AM to 08:30 AM

07:3 User-Defined Peak Hour:

30 AM	to	08:30 AM	
30 AM	to	08:30 AM	

		ove/Slade	7.550010	103, 1110.																
Intersect Direct		1. Wesle			Univers	ity Ave		Vestbou	ad			N	orthbou	nd			-	astbour	a d	
ALL			outhbou ley Circl				V	vestboul	nu				ey Circle					ersity A		
VEHICLES Moveme	1		Thru	Right	Peds	U	Left	Thru	Right	Peds	U	Left	Thru	Right	Peds	U	Left	Thru	Right	Peds
06:30 AM to 06:45 AI			0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
06:45 AM to 07:00 AI			0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	2	0
07:00 AM to 07:15 AI 07:15 AM to 07:30 AI			1 0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1 3	0
07:30 AM to 07:45 AI	5555555	0	13	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0
07:45 AM to 08:00 AI	1 0	0	10	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0
08:00 AM to 08:15 AI			17	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	11	0
08:15 AM to 08:30 Al 08:30 AM to 08:45 Al	0.0000000		6	8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0
08:45 AM to 09:00 AI			4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2
09:00 AM to 09:15 AI	1 0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0
09:15 AM to 09:30 AI		0	13	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1
09:30 AM to 09:45 AI 09:45 AM to 10:00 AI																				
10:00 AM to 10:15 Al																				
10:15 AM to 10:30 AI	1																			
10:30 AM to 10:45 AI																				
10:45 AM to 11:00 AI 11:00 AM to 11:15 AI																				
11:15 AM to 11:30 AI																				
INT. PEAK HR (ALL V			61		1			0		0			0		0		3	34		0
07:30 AM to 08:30 AI			46	15		0	0	0	0		0	0	0	0		1	0	0	33	
Peak Hour Overa Factor (PHF) 0.77	l U		Thru 0.68	Right 0.47	SB 0.80	U n/a	Left n/a	Thru n/a	Right n/a	WB n/a	U n/a	Left n/a	Thru n/a	Right n/a	NB n/a	U 0.25	Left n/a	Thru n/a	Right 0.75	EB 0.71
HEAVY Direct		-	outhbou		0.00	11/d		Vestbou		-1/α	11/d	-	orthbou		.1/ d	J.23		astbour		3.71
VEHICLES Roadw	зу:	Wes	ley Circl									Wesl	ey Circl					ersity A		
(FHWA 4+) Moveme			Thru	Right		U	Left	Thru	Right		U	Left	Thru	Right		U	Left	Thru	Right	
06:30 AM to 06:45 AI 06:45 AM to 07:00 AI			0 0	0		0	0	0 0	0		0	0	0	0		0	0	0	0 0	
07:00 AM to 07:15 Al			0	0		0	0	0	0		0	0	0	0		0	0	0	0	
07:15 AM to 07:30 AI		0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
07:30 AM to 07:45 AI	1 0	0	1	0		0	0	0	0		0	0	0	0		0	0	0	0	
07:45 AM to 08:00 AI	1000		0	0		0	0	0	0		0	0	0	0		0	0	0	0	
08:00 AM to 08:15 AI 08:15 AM to 08:30 AI	100000		0	0		0	0	0	0		0	0	0	0		0	0	0	0	
08:30 AM to 08:45 AI	100000000000000000000000000000000000000		1	1		0	0	0	0		0	0	0	0	4	0	0	0	0	
08:45 AM to 09:00 AI	1 0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
09:00 AM to 09:15 Al			0	0		0	0	0	0		0	0	0	0		0	0	0	2	
09:15 AM to 09:30 Al 09:30 AM to 09:45 Al		0	2	0		0	0	0	0		0	0	0	0		0	U	0	0	
09:45 AM to 10:00 AI																				
10:00 AM to 10:15 AI	1																			
10:15 AM to 10:30 AI																				
10:30 AM to 10:45 AI 10:45 AM to 11:00 AI																				
11:00 AM to 11:15 AI																				
11:15 AM to 11:30 AI	1																			
INT. PEAK HR (ALL V			1					0					0					0		
07:30 AM to 08:30 Al Heavy Vehicle % (P			2.2%	0.0%	1.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
INT. PEAK HR (HV ON			4					0					0					2		
08:30 AM to 09:30 AI		-	3	1	10.00/	0	0	0	0.0%	0.0%	0	0.0%	0	0.0%	0.0%	0	0	0	2	14 20/
Heavy Vehicle % (P	_		10.0%		10.6%	0.0%	0.0% V	0.0% Vestbou		0.0%	0.0%	_	0.0% orthbou		0.0%	0.0%	0.0% E	astbour	14.3% nd	14.5%
BICYCLES Roadw	зу:	Wes	ley Circl	e NW								Wesl	ey Circl	e NW			Univ	ersity A	venue	
Moveme			Thru	Right		0	Left	Thru	Right		0	Left 0	Thru 0	Right 0		U	Left	Thru 0	Right	
06:30 AM to 06:45 AI 06:45 AM to 07:00 AI			0 0	0		0	0	0 0	0		0	0	0	0		0	0	0	0 0	
07:00 AM to 07:15 AI		0	1	0		0	0	0	0		0	0	0	0		0	0	0	0	
07:15 AM to 07:30 AI	100000000000000000000000000000000000000		0	0		0	0	0	0		0	0	0	0		0	0	0	0	
07:30 AM to 07:45 AI	1000		0	0		0	0	0	0		0	0	0	0		0	0	0	0	
07:45 AM to 08:00 AI 08:00 AM to 08:15 AI	1000000		1 0	0		0	0	0	0		0	0	0	0		0	0	0	0	
08:15 AM to 08:30 AI			1	0		0	0	0	0		0	0	0	0		0	0	0	0	
08:30 AM to 08:45 AI			0	0		0	0	0	0		0	0	0	0		0	0	0	0	
08:45 AM to 09:00 AI			0	0		0	0	0	0		0	0	0	0		0	0	0	0	
09:00 AM to 09:15 Al 09:15 AM to 09:30 Al			0 0	0		0	0	0 0	0 0		0	0 0	0	0 0		0	0 0	0	0 0	J
09:30 AM to 09:45 AI		3	Ü	Ü		<u> </u>	J	Ü	5			Ü	•	-			J	J	•	J
09:45 AM to 10:00 AI						Ī														J
10:00 AM to 10:15 AI																				J
10:15 AM to 10:30 AI 10:30 AM to 10:45 AI																				
10:45 AM to 11:00 AI																				
11:00 AM to 11:15 AI																				
11:15 AM to 11:30 AI			2					2					•					•		
INT. PEAK HR (ALL V 07:30 AM to 08:30 AI			2	0		0	0	0	0		0	0	0 0	0		0	0	0 0	0	
INT. PEAK HR (BIK		U	2	0		J		0	U		U		0	U		U		0	U	
07:00 AM to 08:00 AI		0	2	0		0	0	0	0		0	0	0	0		0	0	0	0	

VEHICL	E PEAK	HOUR \	OLS A	ND PHF	Inter	sectio	n Peak	(vehicle)		
		0.	80		_						
	0.47	0.68	n/a	n/a	61	0					
	0.	0.	u	۲	\downarrow	\uparrow					
	SBR	SBT	SBL	SBU	Wesley Circle NW		1	0	WBR	n/a	
					rcle		(0	WBT	n/a	
	15	46	0	0	y Ci		\downarrow	0	WBL	n/a	n/a
	←	\downarrow	\rightarrow	1	- esle		\rightarrow	0	WBU	n/a	
16	←				Ś					\leftarrow	0
34	\rightarrow	Ur	niversity	Avenu	ρ					\rightarrow	0
<u> </u>				- / 10 C / / a /	_	>					
31	0.25	EBU	1	<i>→</i>		MN a	\downarrow	←	↑	\rightarrow	
	0.25 n/a			1		ircle NW				\rightarrow	
0.71		EBU	1	←		ey Circle NW	0	0	↑ 0		
	n/a	EBU EBL	1 0	←		Vesley Circle NW	0	0	0	→ 0	
	n/a n/a	EBU EBL EBT	1 0 0	← ↑ →		Wesley Circle NW				\rightarrow	
	n/a n/a	EBU EBL EBT	1 0 0	← ↑ →	→ 62	$0 \rightarrow Wesley Circle NW$	0	0	0	→ 0	

		1.0	6%		⊣	0					
	0.0%	2.2%	0.0%	0.0%							
	SBR	SBT	SBL	SBU		'	l				
	S	- 5	٠,	8	Wesley Circle NW		↑	0	WBR	0.0%	l
	0	1	0	0	Circ		\leftarrow	0	WBT	0.0%	l
					ey		\downarrow	0	WBL	0.0%	l
	\leftarrow	\downarrow	\rightarrow	\uparrow	lsa/		\rightarrow	0	WBU	0.0%	
0	+				S					\leftarrow	
0	\rightarrow	Ur	niversity	Avenu	е	>				\rightarrow	
	0.0%	EBU	0	←		N	\downarrow	\leftarrow	\uparrow	\rightarrow	_
0%	0.0%	EBL	0	\uparrow		ircle	0	0	0	0	
U /⁄o	0.0%	EBT	0	\rightarrow		ey C					
	0.0%	EBR	0	\downarrow		Wesley Circle NW	NBU	NBL	NBT	NBR	l
						Λ	Ž	Z	Z	Z	
					\downarrow	\uparrow	%0:0	0.0%	0.0%	0.0%	

PED AN	ID BIKE	PEAK H	OUR VO	DLUMES	6: Inte	rsecti	on Peak	(vehicl	e)		
						0 +					
PEDS	SBR	SBT	SBL	SBU	NW :		$\leftrightarrow \\ \uparrow$	0	PEDS WBR		
0	0	2	0	0	Wesley Circle NW		← ↓	0	WBT		
\$	←	\downarrow	\rightarrow	\uparrow	esle		\rightarrow	0	WBU		
0	+				Z		'			+	0
0	\rightarrow	Un	iversity	Avenue	2	>				\rightarrow	0
		EBU	0	\leftarrow		١٧٠	\downarrow	\leftarrow	\uparrow	\rightarrow	\$
		EBL	0	\uparrow		ircle	0	0	0	0	0
		EBT	0	\rightarrow		еу С))	
		EBR	0	\downarrow		Wesley Circle NW	NBU	NBL	NBT	NBR	PEDS
		PEDS	0	\leftrightarrow		^	Ž	z	Z	Z	PE
						<u> </u>					

DATA COLLECTION NOTES:

Gorove/Slade Associates - Multimodal Turning Movement Count Report

Project Name : Landmark Housing at Wesley Theolog

Project #: 2997-001
Location Washington DC
Data Source: Gorove/Slade Associates, Inc.

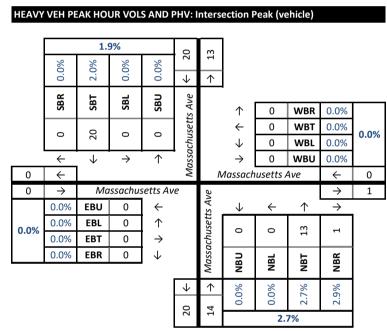
Analysis Period: STUDY_PERIOD

Date of Counts: Wednesday, September 22, 2021

Weather: Cloudy

06:30 AM to 09:30 AM

Volumes Displayed as: 1. Intersection Peak (vehicle)


Intersection Peak Hour (all vehicles): 07:30 AM to 08:30 AM

System Peak Hour (all vehicles): 07:30 AM to 08:30 AM

User-Defined Peak Hour: 07:30 AM to 08:30 AM

Intersection:	1.	Massa	chusett	s Ave &	Massa	chusett	s Ave													
Direction:		Sc	outhbou	nd			V	Vestbou					orthbou					astbour		
VEHICLES Roadway: Movement:	U	Mass Left	achuset Thru	ts Ave Right	Peds	U	Mass Left	achuset Thru	ts Ave Right	Peds	U	Massa Left	achuset Thru	ts Ave Right	Peds	U	Massa Left	achuset Thru	ts Ave Right	Peds
06:30 AM to 06:45 AM	0	0	51	0	0	0	0	0	0	4	0	0	39	1	0	0	0	0	1	1
06:45 AM to 07:00 AM	0	0	78	0	0	0	0	0	0	2	0	0	36	3	0	0	0	0	2	2
07:00 AM to 07:15 AM	0	0	82	0	0	0	0	0	0	3	0	0	56	3	0	0	0	0	2	1
07:15 AM to 07:30 AM 07:30 AM to 07:45 AM	0	0	175 311	0	0	0	0	0	0	3	0	0	73 91	5	0	0	0	1	2 17	5
07:45 AM to 08:00 AM	0	2	246	0	0	0	0	0	0	0	0	0	118	3	0	0	1	1	17	1
08:00 AM to 08:15 AM	0	1	254	0	0	0	0	0	0	0	0	0	145	11	0	0	0	0	28	2
08:15 AM to 08:30 AM 08:30 AM to 08:45 AM	0	2	210 243	0	0	0	0	0	0	5 8	0	0	131 125	15 10	0	0	0	1	13 9	3
08:45 AM to 09:00 AM	0	1	211	0	0	0	0	0	0	6	0	0	119	10	0	0	0	0	5	5
09:00 AM to 09:15 AM	0	0	169	0	0	0	0	0	0	7	0	0	112	9	0	0	0	0	13	2
09:15 AM to 09:30 AM 09:30 AM to 09:45 AM	0	0	155	0	0	0	0	0	0	3	0	0	89	6	0	0	1	0	15	1
09:45 AM to 10:00 AM																				
10:00 AM to 10:15 AM																				
10:15 AM to 10:30 AM																				
10:30 AM to 10:45 AM 10:45 AM to 11:00 AM																				
11:00 AM to 11:15 AM																				
11:15 AM to 11:30 AM			127					0				-	10					<u>'0</u>		
INT. PEAK HR (ALL VEH) 07:30 AM to 08:30 AM	0	6	1021	0	0	0	0	0 0	0	8	0	0	19 485	34	0	0	2	'9 2	75	4
Peak Hour Overall	U	Left	Thru	Right	SB	U	Left	Thru	Right	WB	U	Left	Thru	Right	NB	U	Left	Thru	Right	EB
Factor (PHF) 0.93	n/a	0.75	0.82	n/a	0.82	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0.84	0.57	0.83	n/a	0.50	0.50	0.67	0.71
HEAVY Direction: VEHICLES Roadway:			outhbou achuset					Vestbou achuset					orthbou achuset					astbour achuset		
(FHWA 4+) Movement:	U	Left	Thru	Right		U	Left	Thru	Right		U	Left	Thru	Right		U	Left	Thru	Right	
06:30 AM to 06:45 AM	0	0	2	0		0	0	0	0		0	0	2	0		0	0	0	0	
06:45 AM to 07:00 AM	0	0	4	0		0	0	0	0		0	0	1	0		0	0	0	0	
07:00 AM to 07:15 AM 07:15 AM to 07:30 AM	0	0 0	5 2	0 0		0	0	0	0		0	0	5 2	0 2		0	0	0 0	0	
07:30 AM to 07:45 AM	0	0	4	0		0	0	0	0		0	0	3	0		0	0	0	0	
07:45 AM to 08:00 AM	0	0	4	0		0	0	0	0		0	0	3	0		0	0	0	0	
08:00 AM to 08:15 AM	0	0	6	0		0	0	0	0		0	0	3	0		0	0	0	0	
08:15 AM to 08:30 AM 08:30 AM to 08:45 AM	0	0	6 10	0		0	0	0	0		0	0	4	0		0	0	0	0	
08:45 AM to 09:00 AM	0	0	3	0		0	0	0	0		0	0	3	0		0	0	0	0	
09:00 AM to 09:15 AM	0	0	2	0		0	0	0	0		0	0	3	0		0	0	0	2	
09:15 AM to 09:30 AM 09:30 AM to 09:45 AM	0	0	7	0		0	0	0	0		0	0	7	0		0	0	0	3	
09:45 AM to 10:00 AM																				
10:00 AM to 10:15 AM																				
10:15 AM to 10:30 AM																				
10:30 AM to 10:45 AM 10:45 AM to 11:00 AM																				
11:00 AM to 11:15 AM																				
11:15 AM to 11:30 AM								_										-		
INT. PEAK HR (ALL VEH) 07:30 AM to 08:30 AM	0	0	20	0		0	0	0	0		0	0	13	1		0	0	0	0	
Heavy Vehicle % (PHV):		0.0%		0.0%	1.9%	0.0%	0.0%	-	0.0%	0.0%	0.0%	0.0%	2.7%	2.9%	2.7%	0.0%	0.0%	0.0%	0.0%	0.0%
INT. PEAK HR (HV ONLY)		:	22					0				1	7					6		
08:30 AM to 09:30 AM Heavy Vehicle % (PHV):	0.0%	0.0%	22	0.0%	2.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.8%	0.0%	3.5%	0.0%	0.0%	0.0%	6 14.3%	13.6%
Direction:	_	_	uthbou		2.070	3.076	_	Vestbou		3.376	3.070	_	orthbou		3.3/6	3.070		astbour		23.076
BICYCLES Roadway:		Mass	achuset	ts Ave			Mass	achuset	ts Ave			Massa	achuset	ts Ave			Massa	chuset	ts Ave	
Movement: 06:30 AM to 06:45 AM	0	Left 0	Thru 0	Right 0		U 0	Left 0	Thru 0	Right 0		0	Left 0	Thru 0	Right 0		0	Left 0	Thru 0	Right 0	
06:30 AM to 07:00 AM	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
07:00 AM to 07:15 AM	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	1	
07:15 AM to 07:30 AM 07:30 AM to 07:45 AM	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
07:45 AM to 07:45 AM 07:45 AM	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
08:00 AM to 08:15 AM	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
08:15 AM to 08:30 AM	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
08:30 AM to 08:45 AM 08:45 AM to 09:00 AM	0	0 0	0 2	0 0		0	0 0	0 0	0 0		0	0 0	0 0	0 0		0	0 0	0 0	0 0	
09:00 AM to 09:15 AM	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
09:15 AM to 09:30 AM	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
09:30 AM to 09:45 AM 09:45 AM to 10:00 AM	1																			
10:00 AM to 10:15 AM	1																			
10:15 AM to 10:30 AM	1																			
10:30 AM to 10:45 AM	1																			
10:45 AM to 11:00 AM 11:00 AM to 11:15 AM	1																			
11:00 AM to 11:15 AM 11:15 AM																				
INT. PEAK HR (ALL VEH)			0				_	0					0					0		
07:30 AM to 08:30 AM	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
INT. PEAK HR (BIKES) 08:00 AM to 09:00 AM	0	0	2 2	0		0	0	0 0	0		0	0	0 0	0		0	0	0	0	

	E PEAK	HOUR	VOLS A	ND PHE	: Inte	rsecti	on Peal	(vehic	le)		
		0.	82		27	37					
	n/a	0.82	0.75	n/a	← 1027	→ 487					
	SBR	SBT	SBL	SBU	Massachusetts Ave		^	0	WBR	n/a	
	0	1021	9	0	sett		\leftarrow	0	WBT	n/a	n/a
)	10))	ıchı		\downarrow	0	WBL	n/a	11/ 0
	\leftarrow	\downarrow	\rightarrow	\uparrow	สรรต		\rightarrow	0	WBU	n/a	
0	←				Š	٨	1assach	usetts /	Ave	\leftarrow	0
79	,										
79	\rightarrow	Ma	ıssachu:	setts Av	<i>ie</i>	ve				\rightarrow	42
79	→ n/a	EBU	issachu: 0	setts Aı ←	<i>ie</i>	ts Ave	\downarrow	←	1	\rightarrow	42
	_			T	<i>ie</i>	isetts Ave				\rightarrow	42
0.71	n/a	EBU	0	←	<i>ie</i>	schusetts Ave	0	←	485 →		42
	n/a 0.50	EBU EBL	0 2	←	<i>ie</i>	assachusetts Ave	0	0	485	34 🛧	42
	n/a 0.50 0.50	EBU EBL EBT	0 2 2	← ↑ →	ie	Massachusetts Ave				\rightarrow	42
	n/a 0.50 0.50	EBU EBL EBT	0 2 2	← ↑ →	1096 ←	519 \rightarrow Massachusetts Ave	0	0	485	34 🛧	42

PED A	ND BIKE	PEAK H	IOUR V	OLUME	S: Int	ersect	tion Pea	ak (vehi	cle)		
					0 →	0 +					
PEDS	SBR	SBT	SBL	SBU	Ave		\leftrightarrow	0	PEDS WBR		
					Massachusetts Ave		↑ ←	0	WBT		
4	0	0	0	0	chus		\downarrow	0	WBL		
\$	←	.	\rightarrow	\uparrow	assa		\rightarrow	0	WBU		
0	←					٨	1assach	usetts /	4 <i>ve</i>	\leftarrow	0
0	\rightarrow	Ма	ssachus	setts Av	re	Ne				\rightarrow	0
		EBU	0	\leftarrow		ts A	\downarrow	\leftarrow	\uparrow	\rightarrow	
		EBL	0	1		uset	0	0	0	0	00
		EBT	0	\rightarrow		ach					
		EBR	0	V		Massachusetts Ave	NBU	NBL	NBT	NBR	PEDS
		PEDS	0	\leftrightarrow			~	_	2	~	Ь
							l				
					0	0					

DATA COLLECTION NOTES:

Gorove/Slade Associates - Multimodal Turning Movement Count Report

Project Name : Landmark Housing at Wesley Theolog
Project #: 2997-001

Location Washington DC Data Source: Gorove/Slade Associates, Inc.

06:45 PM to 07:00 PM

07:00 PM to 07:15 PM

07:15 PM to 07:30 PM 07:30 PM to 07:45 PM

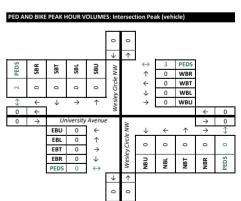
07:45 PM to 08:00 PM

08:00 PM to 08:15 PM 08:15 PM to 08:30 PM 08:30 PM to 08:45 PM 08:45 PM to 09:00 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM INT. PEAK HR (BIKES) 4:30 PM to 05:30 PM

Analysis Period: STUDY_PERIOD

Date of Counts: Wednesday, September 22, 2021

Weather: Cloudy


04:00 PM to 07:00 PM

Volumes Displayed as: 1. Intersection Peak (vehicle)

Intersection:	1. We:		NW & /Univ	ersity Ave													
ALL Direction:		Southbou			We	estbound				orthbour					astbour		
VEHICLES Roadway:		esley Circle								ey Circle					ersity Av		
Movement:	U Le		Right Peds	_	Left		ght Peds	U	Left	Thru	Right	Peds	U	Left	Thru	Right	Peds
04:00 PM to 04:15 PM	0 0		5 1	0	0		0 0	0	0	0	0	0	0	1	0	2	0
04:15 PM to 04:30 PM 04:30 PM to 04:45 PM	0 0		3 1 6 0	0	0		0 0	0	0	0	0	0	0	0	0	5 13	0
04:45 PM to 05:00 PM	0 0		6 1	0	0		0 0	0	0	0	0	0	0	0	0	9	1
05:00 PM to 05:15 PM	0 0		2 1	0	0		0 0	0	0	0	0	0	0	0	0	5	0
05:15 PM to 05:30 PM	0 0		2 0	0	0		0 0	0	0	0	0	0	0	0	0	5	2
05:30 PM to 05:45 PM	0 0		3 0	0	0		0 0	0	0	0	0	0	0	0	0	6	0
05:45 PM to 06:00 PM	0 0	5	10 0	0	0	0	0 0	0	0	0	0	0	0	0	0	2	0
06:00 PM to 06:15 PM	0 0	1	4 0	0	0	0	0 0	0	0	0	0	0	0	0	0	5	1
06:15 PM to 06:30 PM	0 0	6	2 0	0	0	0	0 0	0	0	0	0	0	0	0	0	3	0
06:30 PM to 06:45 PM	0 0	4	4 0	0	0	0	0 0	0	0	0	0	0	0	0	0	4	0
06:45 PM to 07:00 PM	0 0	5	2 0	0	0	0	0 0	0	0	0	0	0	0	0	0	3	1
07:00 PM to 07:15 PM																	
07:15 PM to 07:30 PM																	
07:30 PM to 07:45 PM																	
07:45 PM to 08:00 PM																	
08:00 PM to 08:15 PM				1				1									
08:15 PM to 08:30 PM				1				1									
08:30 PM to 08:45 PM 08:45 PM to 09:00 PM				1				1									
INT. PEAK HR (ALL VEH)		53			0				()				3	80		
04:00 PM to 05:00 PM	0 0		20 3	0	0	0	0	0	0	0	0	0	0	1	0	29	2
Peak Hour Overall	U Le		Right SB	U	Left		ght WB	U	Left	Thru	Right	NB	U	Left	Thru	Right	EB
Factor (PHF) 0.74	n/a n/	a 0.83	0.83 0.83	n/a	n/a	n/a r	/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	0.25	n/a	0.56	0.58
HEAVY Direction:		Southbou	nd		We	estbound			No	orthbour	nd			Е	astbour	nd	
VEHICLES Roadway:		esley Circle	e NW						Wesle	ey Circle	NW			Unive	ersity Av	enue/	
(FHWA 4+) Movement:	U Le	ft Thru	Right	U	Left	Thru R	ght	U	Left	Thru	Right		U	Left	Thru	Right	
04:00 PM to 04:15 PM	0 0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	
04:15 PM to 04:30 PM	0 0		0	0	0		0	0	0	0	0		0	0	0	0	
04:30 PM to 04:45 PM	0 0		0	0	0		0	0	0	0	0		0	0	0	1	
04:45 PM to 05:00 PM	0 0	-	0	0	0		0	0	0	0	0		0	0	0	0	
05:00 PM to 05:15 PM	0 0		0	0	0	0	0	0	0	0	0		0	0	0	0	
								_	_	_	_					_	
05:15 PM to 05:30 PM	0 0		0	0	0	-	0	0	0	0	0		0	0	0	0	
05:30 PM to 05:45 PM	0 0	0	0	0	0	0	0	0	0	0	0		0	0 0	0	0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM	0 0	0	0	0	0	0	0	0	0	0	0		0	0 0 0	0 0	0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM	0 0 0 0 0 0	0 0	0	0	0	0 0	0	0	0	0 0	0		0	0 0 0	0 0 0	0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:30 PM	0 0 0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0	0 0 0	0 0 0	0 0 0	0 0 0		0 0 0	0 0 0 0	0 0 0 0 0	0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM	0 0 0 0 0 0	0 0 0 0 0	0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:30 PM 06:30 PM to 06:45 PM	0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0 0 0	0	0 0 0	0 0 0	0 0 0	0 0 0 0 0		0 0 0	0 0 0 0	0 0 0 0 0	0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:30 PM 06:30 PM to 06:45 PM 06:45 PM to 07:00 PM	0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:30 PM to 06:30 PM to 06:45 PM 06:45 PM to 07:00 PM 07:00 PM to 07:15 PM	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:30 PM 06:30 PM to 06:45 PM 06:45 PM to 07:00 PM 07:00 PM to 07:15 PM 07:15 PM to 07:30 PM	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:30 PM 06:30 PM to 06:45 PM 06:45 PM to 07:00 PM 07:00 PM to 07:15 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:30 PM to 06:45 PM 06:45 PM to 07:00 PM 07:15 PM to 07:15 PM 07:15 PM to 07:45 PM 07:30 PM to 07:45 PM to 08:00 PM 08:00 PM 08:15 PM to 08:30 PM	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:35 PM 06:30 PM to 07:00 PM 07:00 PM to 07:15 PM 07:15 PM to 07:15 PM 07:30 PM to 07:45 PM 07:45 PM to 08:15 PM 08:30 PM to 08:15 PM 08:30 PM to 08:45 PM	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM to 06:30 PM 06:15 PM to 06:30 PM 06:45 PM to 07:00 PM to 07:00 PM to 07:30 PM 07:30 PM to 07:45 PM 07:35 PM to 08:15 PM 08:15 PM to 08:30 PM 08:35 PM 10 08:45 PM 10 08:00 PM 10 08:45 PM 10 09:00 PM	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:35 PM 06:30 PM to 06:45 PM 06:45 PM to 07:00 PM 07:00 PM to 07:30 PM 07:30 PM to 07:30 PM 07:30 PM to 08:00 PM 08:00 PM to 08:15 PM 08:15 PM to 08:45 PM 08:30 PM to 08:45 PM 08:30 PM to 08:45 PM 08:35 PM to 08:45 PM 08:35 PM to 08:45 PM	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 1	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0		0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:30 PM 10:45 PM to 06:30 PM 10:45 PM to 07:00 PM 07:00 PM to 07:15 PM to 07:15 PM 07:30 PM to 07:45 PM to 07:45 PM to 08:30 PM 08:35 PM to 08:30 PM 08:35 PM to 08:30 PM 08:35 PM to 08:45 PM 08:45 PM to 08:45 PM 108:45 PM to 08:00 PM 08:30 PM to 08:45 PM 108:45 PM to 08:00 PM 108:45 PM to 05:00 PM 108:45 PM to 08:50 PM 108:45 PM to 08:50 PM 108:45 PM to 08:50 PM 108:45 PM to 05:00 PM 108:45 PM 1	0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 1	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0.0%	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	2 204
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:45 PM to 06:00 PM 06:15 PM to 06:30 PM 06:35 PM to 06:30 PM 06:45 PM to 06:30 PM 07:00 PM to 07:00 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 07:35 PM to 08:00 PM 08:00 PM to 08:15 PM 08:15 PM to 08:30 PM 08:35 PM to 08:30 PM 08:35 PM to 08:45 PM 08:45 PM to 08:00 PM	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 1	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0.0%	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	3.3%
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:35 PM 06:30 PM to 06:45 PM 06:35 PM to 06:45 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 07:30 PM to 08:15 PM 08:00 PM to 08:15 PM 08:35 PM to 08:45 PM 08:35 PM to 08:45 PM 08:30 PM to 08:45 PM 08:30 PM to 08:00 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM Heavy Vehicle % (PPV) INT. PEAK HR (HV ONLY)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	3.3%
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:30 PM to 06:35 PM 06:35 PM to 06:45 PM 06:45 PM to 07:00 PM 07:00 PM to 07:15 PM 07:35 PM to 07:35 PM 07:35 PM to 07:35 PM 07:35 PM to 07:35 PM 08:30 PM to 08:30 PM 08:30 PM to 08:30 PM 08:30 PM to 08:35 PM 08:35 PM to 09:00 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM HEAVY VEHICLE % (PHV) UNT. PEAK HR (HV OWL) 04:00 PM to 05:00 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:35 PM 06:30 PM to 06:45 PM 06:35 PM to 06:45 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 07:30 PM to 08:15 PM 08:00 PM to 08:15 PM 08:35 PM to 08:45 PM 08:35 PM to 08:45 PM 08:30 PM to 08:45 PM 08:30 PM to 08:00 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM Heavy Vehicle % (PPV) INT. PEAK HR (HV ONLY)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:15 PM to 06:30 PM 06:15 PM to 06:30 PM 06:30 PM to 06:30 PM 06:35 PM to 06:30 PM 07:30 PM to 07:00 PM 07:00 PM to 07:35 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 08:30 PM to 08:30 PM 08:30 PM to 08:30 PM 08:45 PM to 08:30 PM 08:45 PM to 09:00 PM INT. PEAK HR (ALL VEH) INT. PEAK HR (HL VONLY) INT. PEAK HR (HL VONLY) UNT. DESCORPER HEAVY Vehicle % (PHV)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:45 PM to 06:00 PM 06:30 PM to 06:35 PM 06:35 PM to 06:35 PM 06:45 PM to 07:00 PM 07:00 PM to 07:45 PM 07:15 PM to 07:45 PM 07:45 PM to 08:45 PM 08:45 PM to 08:00 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM Heavy Vehicle % (PPV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PV)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:30 PM 06:30 PM to 06:45 PM 06:45 PM to 07:00 PM 07:45 PM to 07:30 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 07:45 PM to 08:30 PM 08:30 PM to 08:30 PM 08:30 PM to 08:45 PM 08:45 PM to 08:30 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) UNT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) Direction: BICYCLES	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:30 PM to 06:35 PM 06:35 PM to 06:35 PM 06:35 PM to 06:45 PM 06:45 PM to 07:00 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 07:35 PM to 08:00 PM 08:35 PM to 08:05 PM 08:15 PM to 08:05 PM 08:15 PM to 08:05 PM 08:45 PM to 08:05 PM 08:45 PM to 08:00 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM HEAVY VEHICLE'S (PHV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM HEAVY VEHICLE'S (PHV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM HEAVY VEHICLE'S (PHV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM HEAVY VEHICLE'S (PHV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM HEAVY VEHICLE'S (PHV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM HEAVY VEHICLE'S (PHV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM HEAVY VEHICLE'S (PHV) 04:15 PM to 04:30 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 1 1 0 0 0.0% 0.0% 0.0% 0.0%	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:45 PM to 06:30 PM 06:15 PM to 06:30 PM 06:35 PM to 06:30 PM 06:35 PM to 06:30 PM 07:30 PM to 07:00 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 08:30 PM to 08:30 PM 08:30 PM to 08:30 PM 08:45 PM to 08:30 PM 08:45 PM to 09:00 PM INT. PEAK HR (HU ONLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) INT. PEAK HR (HU ONLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) INT. PEAK HR (HU ONLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) INT. PEAK HR (HU ONLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) INT. DEAK HR (HU ONLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) INT. DEAK HR (HU ONLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) INT. DEAK HR (HU ONLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) INT. DEAK HR (HU ONLY) 04:00 PM to 04:15 PM 04:15 PM to 04:30 PM 04:30 PM to 04:45 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 1 1 0 0.0% 0.0% 0.0% 0.0% 0 0 0.0% 0.0%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:45 PM to 06:30 PM 06:15 PM to 06:30 PM 06:35 PM to 06:30 PM 06:45 PM to 06:30 PM 06:45 PM to 07:00 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 07:45 PM to 08:30 PM 08:30 PM to 08:45 PM 08:15 PM to 08:30 PM 08:30 PM to 08:45 PM 08:45 PM to 09:00 PM INT. PEAK HR (HL VEH) INT. PEAK HR (HL VONLY) INT.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:30 PM to 06:35 PM 06:35 PM to 06:35 PM 06:35 PM to 06:45 PM 06:45 PM to 07:00 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 07:45 PM to 08:01 PM 08:00 PM to 08:15 PM 08:35 PM to 08:15 PM 08:35 PM to 08:45 PM 08:45 PM to 09:00 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM Heavy Vehicle % (PPV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PPV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM 04:00 PM to 04:30 PM 04:30 PM to 04:30 PM 04:30 PM to 04:30 PM 04:35 PM to 04:35 PM 04:45 PM to 05:00 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 1 1 0 0.0% 0.0% 0.0% 0.0% 0.0%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 1 3.4%	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:45 PM to 06:30 PM 06:15 PM to 06:30 PM 06:35 PM to 06:30 PM 06:35 PM to 06:30 PM 06:35 PM to 07:00 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:35 PM to 08:30 PM 08:30 PM to 08:30 PM 08:35 PM to 08:30 PM 08:45 PM to 08:30 PM 08:45 PM to 08:45 PM 08:45 PM to 09:40 PM Heavy Vehicle % (PHV) INT. PEAK HR (HL VOLY) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) INT. PEAK HR (HL VOLY) 04:00 PM to 05:00 PM 04:15 PM to 04:30 PM 04:45 PM to 04:30 PM 04:30 PM to 04:45 PM 04:45 PM to 04:30 PM 04:45 PM to 04:30 PM 04:45 PM to 04:30 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 1 1 0 0 0.0% 0.0% 0 0.0% 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 1 3.4%	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:45 PM to 06:30 PM 06:15 PM to 06:30 PM 06:35 PM to 06:30 PM 06:45 PM to 06:30 PM 06:45 PM to 07:00 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 07:45 PM to 08:30 PM 08:35 PM to 08:30 PM 08:35 PM to 08:35 PM 08:45 PM to 08:30 PM 08:45 PM to 09:00 PM INT. PEAK HR (ALL VEH) INT. PEAK HR (HV ONLY) INT. P	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0.0% 1 1 0 0 0.0% 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:35 PM 06:35 PM to 06:35 PM 06:35 PM to 06:35 PM 06:45 PM to 07:00 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 07:45 PM to 08:01 PM 08:00 PM to 08:15 PM 08:15 PM to 08:30 PM 08:45 PM to 08:30 PM 08:45 PM to 08:00 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM HEAVY Vehicle % (PPV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM DIRECTION BICYCLES ROADWay: DIRECTION 04:15 PM 04:15 PM to 04:15 PM 04:30 PM to 04:45 PM 04:35 PM to 05:00 PM 05:30 PM to 05:30 PM 05:30 PM to 05:30 PM 05:31 PM to 05:30 PM 05:31 PM to 05:30 PM 05:31 PM to 05:30 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 1 1 0 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 1 3.4%	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:45 PM to 06:30 PM 06:15 PM to 06:30 PM 06:35 PM to 06:30 PM 06:35 PM to 06:30 PM 06:35 PM to 07:00 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:35 PM to 08:00 PM 08:00 PM to 07:45 PM 08:15 PM to 08:30 PM 08:30 PM to 08:30 PM 08:45 PM to 08:30 PM 08:45 PM to 09:00 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM Heavy Vehicle % (PHV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM 04:15 PM to 05:00 PM 04:15 PM to 05:00 PM 04:15 PM to 04:30 PM 04:15 PM to 05:00 PM 04:15 PM to 04:30 PM 04:15 PM to 04:30 PM 04:30 PM to 04:35 PM 04:35 PM to 05:30 PM 05:30 PM to 05:35 PM 05:34 PM to 05:30 PM 05:34 PM to 05:30 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 1 1 1 0 0 0.0% 0.0% 0 0.0% 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
05:30 PM to 05:45 PM 05:45 PM to 06:00 PM 06:00 PM to 06:15 PM 06:15 PM to 06:35 PM 06:35 PM to 06:35 PM 06:35 PM to 06:35 PM 06:45 PM to 07:00 PM 07:00 PM to 07:45 PM 07:15 PM to 07:30 PM 07:30 PM to 07:45 PM 07:45 PM to 08:01 PM 08:00 PM to 08:15 PM 08:15 PM to 08:30 PM 08:45 PM to 08:30 PM 08:45 PM to 08:00 PM INT. PEAK HR (ALL VEH) 04:00 PM to 05:00 PM HEAVY Vehicle % (PPV) INT. PEAK HR (HV ONLY) 04:00 PM to 05:00 PM DIRECTION BICYCLES ROADWay: DIRECTION 04:15 PM 04:15 PM to 04:15 PM 04:30 PM to 04:45 PM 04:35 PM to 05:00 PM 05:30 PM to 05:30 PM 05:30 PM to 05:30 PM 05:31 PM to 05:30 PM 05:31 PM to 05:30 PM 05:31 PM to 05:30 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 1 1 0 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 1 3.4%	

		0.	83		53	1					
	0.83	0.83	n/a	n/a							
	0	0	u		\downarrow	\uparrow					
	SBR	SBT	SBL	SBU	Wesley Grde NW		1	0	WBR	n/a	
					rde		←	0	WBT	n/a	
	20	33	0	0	9		\downarrow	0	WBL	n/a	n,
	+	\downarrow	\rightarrow	1	esk		\rightarrow	0	WBU	n/a	
20	+				Š					+	_
30	\rightarrow	Ur	niversity	Avenu	e	~				\rightarrow	-
	n/a	EBU	0	←		Na.	\downarrow	←	1	\rightarrow	
0.58	0.25	EBL	1	1		Sircl	0	0	0	0	
	n/a	EBT	0	\rightarrow		ey (
	0.56	EBR	29	\downarrow		Wesley Circle NW	NBU	NBL	NBT	NBR	
					V	1		_			
						-11	e/u	u/a	n/a	n/a	
					62	0			/a		

		0.0	0%		0	0					
	0.0%	0.0%	%0:0	0.0%)	<u>↑</u>					
	SBR	SBT	SBL	SBU	Wesley Grde NW			0	WBR	0.0%	
	0	0	0	0	irde		\leftarrow	0	WBT	0.0%	0
)	·))	sy C		\downarrow	0	WBL	0.0%	۰
	←	\downarrow	\rightarrow	1	es!		\rightarrow	0	WBU	0.0%	
0	+				Ş					\downarrow	
1	\rightarrow	Un	niversity	Avenu	е	<i>\</i>				\uparrow	
	0.0%	EBU	0	←		V a	\downarrow	\leftarrow	\uparrow	\rightarrow	
3.3%	0.0%	EBL	0	1		irch	0	0	0	0	
3.370	0.0%	EBT	0	\rightarrow		ey C))	Ŭ)	ı
	3.4%	EBR	1	\downarrow		Wesley Circle NW	NBU	NBL	NBT	NBR	
						И	N	Z	Z	Z	
					4	\wedge	%0:0	%0:0	0.0%	%0:0	

DATA COLLECTION NOTES :

04:00 PM to 07:00 PM

Gorove/Slade Associates - Multimodal Turning Movement Count Report

Project Name: Landmark Housing at Wesley Theolog
Project #: 2997-001
Location Washington DC
Data Source: Gorove/Slade Associates, Inc.

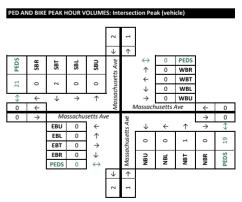
Analysis Period: STUDY_PERIOD

Date of Counts: Wednesday, September 22, 2021

Weather: Cloudy

 Volumes Displayed as:
 1. Intersection Peak (vehicle)

 Intersection Peak Hour (all vehicles):
 04:45 PM
 to
 05:45 PM


 System Peak Hour (all vehicles):
 04:45 PM
 to
 05:45 PM

 User-Defined Peak Hour:
 05:00 PM
 to
 06:00 PM

	Intersection:	1.	Massa	chusett	s Ave &	Massa	chusett	s Ave													
ALL	Direction:			uthbou					Vestbou					rthbou					astbou		
VEHICLES	Roadway: Movement:	U	Left	Thru	Right	Peds	U	Left	achuset Thru	Right	Peds	U	Left	chuset Thru	Right	Peds	U	Left	achuset Thru	Right	Peds
04:00 PM	to 04:15 PM	0	0	138	0	0	0	0	0	0	2	0	0	208	15	0	0	0	0	10	5
	to 04:30 PM	0	1	133	0	0	0	0	0	0	3	0	0	177	16	0	0	5	0	6	1
	to 04:45 PM	0	0	130	0	0	0	0	0	0	2	0	0	221	11	0	0	5	1	16	4
	to 05:00 PM to 05:15 PM	0	0	168 188	0	0	0	0	0	0	2 10	0	0	207 241	15 15	0	0	2	3 2	14 12	5 6
	to 05:30 PM	0	0	210	0	0	0	0	0	0	4	0	0	232	27	0	0	0	0	11	7
05:30 PM	to 05:45 PM	0	0	163	0	0	0	0	0	0	3	1	0	232	18	0	0	1	1	11	3
	to 06:00 PM	0	0	174	0	0	0	0	0	0	1	0	0	207	12	0	0	2	0	5	4
	to 06:15 PM to 06:30 PM	0	0	155	0	0	0	0	0	0	0	0	0	206	20	0	0	0	0	6	2
	to 06:45 PM	0	0	180 152	0	0	0	0	0	0	2	0	0	183 141	12 7	0	0	1	3 1	5 6	0 4
	to 07:00 PM	0	0	132	0	0	0	0	0	0	3	0	0	151	9	0	0	1	0	7	0
07:00 PM	to 07:15 PM																				
	to 07:30 PM																				
	to 07:45 PM																				
	to 08:00 PM to 08:15 PM																				
	to 08:30 PM																				
08:30 PM	to 08:45 PM																				
	to 09:00 PM																				
	AK HR (ALL VEH)	_		29		0			0		19		98		75	0			57	10	21
04:45 PM Peak Hou	to 05:45 PM	U U	0 Left	729 Thru	0 Right	SB	0 U	0 Left	0 Thru	0 Right	WB	U U	0 Left	912 Thru	75 Right	NB	0 U	3 Left	6 Thru	48 Right	EB
Factor (PH		n/a	n/a	0.87	n/a	0.87	n/a	n/a	n/a	n/a	n/a	0.25	n/a	0.95	0.69	0.95	n/a	0.38	0.50	0.86	0.75
HEAVY	Direction:			uthbou					Vestbou					orthbou					astbou		
VEHICLES	Roadway:			chuset					achuset					chuset					achuset		
(FHWA 4+)	Movement:	U	Left	Thru	Right		U	Left	Thru	Right		U	Left	Thru	Right		U	Left	Thru	Right	
	to 04:15 PM to 04:30 PM	0	0	6 2	0		0	0	0	0		0	0	2	0		0	0	0	0	
	to 04:35 PM	0	0	4	0		0	0	0	0		0	0	7	0		0	0	0	1	
	to 05:00 PM	0	0	6	0		0	0	0	0		0	0	4	0		0	0	0	0	
05:00 PM	to 05:15 PM	0	0	1	0		0	0	0	0		0	0	3	0		0	0	0	0	
	to 05:30 PM	0	0	7	0		0	0	0	0		0	0	1	1		0	0	0	0	
	to 05:45 PM	0	0	3	0		0	0	0	0		0	0	7	0		0	0	0	0	
	to 06:00 PM to 06:15 PM	0	0	1	0		0	0	0	0		0	0	4	0		0	0	0	0	
	to 06:30 PM	0	0	4	0		0	0	0	0		0	0	3	0		0	0	0	0	
06:30 PM	to 06:45 PM	0	0	3	0		0	0	0	0		0	0	2	0		0	0	0	0	
	to 07:00 PM	0	0	6	0		0	0	0	0		0	0	5	0		0	0	0	0	
	to 07:15 PM																				
	to 07:30 PM to 07:45 PM																				
	to 08:00 PM																				
	to 08:15 PM																				
	to 08:30 PM																				
	to 08:45 PM																				
	to 09:00 PM AK HR (ALL VEH)		1	.7					0												
	to 05:45 PM												1	c					n		
	Vehicle % (PHV):	0			0		0		i	0		0		6	1		0	_	0 0	0	
INT. PEA		0.0%	0	17	0	2.3%	0	0.0%	0.0%	0.0%	0.0%	0	0 0.0%	.6 15 1.6%	1 1.3%	1.6%	0	0 0.0%	0 0 0.0%	0 0.0%	0.0%
	K HR (HV ONLY)		0.0%	17		2.3%	_	0.0%	0	_	0.0%	_	0.0%	15		1.6%	_	0.0%	0	_	0.0%
	to 05:30 PM	0.0%	0 0.0% 1 0	17 2.3% 8 18	0.0%		0.0%	0 0.0%	0 0.0%	0.0%		0.0%	0 0.0% 1 0	15 1.6% 6 15	1.3%		0.0%	0 0.0%	0 0.0% 1 0	0.0%	
Heavy	to 05:30 PM Vehicle % (PHV):	0.0%	0 0.0% 1 0 0.0%	17 2.3% .8 18 2.6%	0.0%	2.3%	0.0%	0 0.0%	0 0.0% 0 0 0 0.0%	0.0%	0.0%	0.0%	0 0.0% 1 0 0.0%	15 1.6% 6 15 1.7%	1.3% 1 1.5%	1.6%	0.0%	0 0.0%	0 0.0% 1 0 0.0%	0.0% 1 1.9%	0.0%
BICYCLES	to 05:30 PM	0.0%	0 0.0% 1 0 0.0%	17 2.3% .8 18 2.6% outhbou	0.0% 0 0.0%		0.0%	0 0.0% 0 0 0.0%	0 0.0% 0 0 0.0% Vestbou	0.0% 0 0.0%		0.0%	0 0.0% 1 0 0.0%	15 1.6% 6 15 1.7% orthbou	1.3% 1 1.5%		0.0%	0 0.0% 0 0.0%	0 0.0% 1 0 0.0%	0.0% 1 1.9%	
	to 05:30 PM Vehicle % (PHV): Direction:	0.0%	0 0.0% 1 0 0.0%	17 2.3% .8 18 2.6%	0.0% 0 0.0%		0.0%	0 0.0% 0 0 0.0%	0 0.0% 0 0 0 0.0%	0.0% 0 0.0%		0.0%	0 0.0% 1 0 0.0%	15 1.6% 6 15 1.7%	1.3% 1 1.5%		0.0%	0 0.0% 0 0.0%	0 0.0% 1 0 0.0%	0.0% 1 1.9%	
BICYCLES 04:00 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM	0.0% 0 0.0% U	0 0.0% 1 0 0.0% So Massa Left	17 2.3% .8 18 2.6% outhbou achuset Thru	0.0% 0 0.0% nd ts Ave Right 0		0.0% 0 0.0% U	0 0.0% 0 0.0% V Mass Left	0 0.0% 0 0.0% Vestbou achuset Thru	0.0% 0.0% nd tts Ave Right 0		0.0% 0 0.0% U	0 0.0% 1 0 0.0% No Massa Left	15 1.6% 6 15 1.7% orthbou achuset Thru	1.3% 1 1.5% nd ts Ave Right 0		0.0% 0 0.0% U	0 0.0% 0 0.0% E Mass Left	0 0.0% 1 0 0.0% astbourachuset Thru	0.0% 1 1.9% nd tts Ave Right 0	
04:00 PM 04:15 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:30 PM	0.0% 0 0.0% U	0 0.0% 1 0 0.0% So Massa Left 0	17 2.3% .8 18 2.6% authbou achuset Thru 0	0.0% 0 0.0% nd ts Ave Right 0		0.0% 0 0.0% U	0 0.0% 0 0.0% V Mass Left 0	0 0.0% 0 0.0% Vestbou achuset Thru 0	0.0% 0 0.0% nd ts Ave Right 0		0.0% 0 0.0% U	0 0.0% 1 0 0.0% No Massa Left 0	15 1.6% 6 15 1.7% orthbou chuset Thru 0	1.3% 1 1.5% nd ts Ave Right 0 0		0.0% 0 0.0% U	0 0.0% 0 0.0% E Mass Left 0	0 0.0% 1 0 0.0% Castbour achuset Thru 0 0	0.0% 1 1.9% nd tts Ave Right 0	
04:00 PM 04:15 PM 04:30 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM	0.0% 0 0.0% U	0 0.0% 1 0 0.0% So Massa Left	17 2.3% .8 18 2.6% outhbou achuset Thru	0.0% 0 0.0% nd ts Ave Right 0		0.0% 0 0.0% U	0 0.0% 0 0.0% V Mass Left	0 0.0% 0 0.0% Vestbou achuset Thru	0.0% 0.0% nd tts Ave Right 0		0.0% 0 0.0% U	0 0.0% 1 0 0.0% No Massa Left	15 1.6% 6 15 1.7% orthbou achuset Thru	1.3% 1 1.5% nd ts Ave Right 0		0.0% 0 0.0% U	0 0.0% 0 0.0% E Mass Left	0 0.0% 1 0 0.0% astbourachuset Thru	0.0% 1 1.9% nd tts Ave Right 0	
04:00 PM 04:15 PM 04:30 PM 04:45 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:30 PM to 04:45 PM	0.0% 0 0.0% U 0 0	0 0.0% 1 0 0.0% So Massa Left 0	17 2.3% 8 18 2.6% buthbou achuset: Thru 0 0	0.0% 0 0.0% nd ts Ave Right 0 0		0.0% 0 0.0% U 0 0	0 0.0% 0 0.0% V Mass Left 0 0	0 0.0% 0 0 0.0% Vestbou achuset Thru 0 0	0.0% 0 0.0% nd ts Ave Right 0 0		0.0% 0 0.0% U 0 0	0 0.0% 1 0 0.0% No Massa Left 0	15 1.6% 6 15 1.7% orthbou achuset: Thru 0 0	1.3% 1 1.5% nd ts Ave Right 0 0		0.0% 0 0.0% U 0 0	0 0.0% 0 0.0% E Mass Left 0 0	0 0.0% 1 0 0.0% (asstbour achuset Thru 0 0	0.0% 1 1.9% nd tts Ave Right 0 0	
04:00 PM 04:15 PM 04:30 PM 04:30 PM 04:45 PM 05:00 PM 05:15 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:45 PM to 05:00 PM to 05:30 PM to 05:30 PM	0.0% 0 0.0% U 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0	17 2.3% 8 18 2.6% buthbou achuset Thru 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0		0.0% 0 0.0% U 0 0 0 0	0 0.0% V Mass Left 0 0 0	0 0.0% 0 0.0% Vestbou achuset Thru 0 0 0	0.0% 0 0.0% nd tts Ave Right 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0	15 1.6% 6 15 1.7% orthbou chuset Thru 0 0 0 0 1	1.3% 1 1.5% nd ts Ave Right 0 0 0 0 0		0.0% 0 0.0% U 0 0	0 0.0% 0 0.0% E Mass Left 0 0 0 0	0 0.0% 1 0 0.0% astbour achuset Thru 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0	
04:00 PM 04:15 PM 04:30 PM 04:30 PM 04:45 PM 05:00 PM 05:15 PM 05:30 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:30 PM to 04:45 PM to 05:15 PM to 05:15 PM to 05:30 PM to 05:30 PM	0.0% 0 0.0% U 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0	17 2.3% 8 18 2.6% buthbou ochuset: Thru 0 0 0 0 0 1 1	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0	0 0.0% V Mass Left 0 0 0 0	0 0.0% 0 0.0% Vestbou achuset Thru 0 0 0 0	0.0% 0 0.0% nd tts Ave Right 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0 0	15 1.6% 6 15 1.7% orthbou chuset: Thru 0 0 0 1 0 0	1.3% 1 1.5% nd is Ave Right 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0	0 0.0% 0.0% E Mass Left 0 0 0 0	0 0.0% 1 0 0.0% astbour achuset Thru 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:30 PM 04:30 PM 05:00 PM 05:15 PM 05:30 PM 05:30 PM 05:45 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:30 PM to 05:00 PM to 05:30 PM to 05:30 PM to 05:30 PM to 05:45 PM to 05:45 PM to 05:45 PM	0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0	17 2.3% 8 18 2.6% buthbou ochuset: Thru 0 0 0 0 0 1 1	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0	0 0.0% V Mass Left 0 0 0 0	0 0.0% 0 0.0% Vestbou achuset Thru 0 0 0 0 0	0.0% 0 0.0% nd its Ave Right 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou ochuset: Thru 0 0 0 0 1 0 0	1.3% 1 1.5% nd is Ave Right 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0	0 0.0% 0.0% Mass Left 0 0 0 0 0	0 0.0% 1 0 0.0% astbour achuset Thru 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:15 PM 04:30 PM 04:45 PM 05:00 PM 05:15 PM 05:30 PM 05:45 PM 06:00 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:30 PM to 05:00 PM to 05:30 PM to 05:30 PM to 05:35 PM to 06:00 PM to 06:00 PM to 06:15 PM	0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0	17 2.3% 8 18 2.6% buthbou chuset: Thru 0 0 0 0 1 1 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 0.0% V Mass Left 0 0 0 0 0	0 0.0% 0 0.0% Vestbou achuset Thru 0 0 0 0 0	0.0% 0 0.0% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% No Massa Left 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou chuset: Thru 0 0 0 1 0 0	1.3% 1 1.5% nd is Ave Right 0 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% Mass Left 0 0 0 0 0	0 0.0% 1 0 0.0% asstbour achuset Thru 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:15 PM 04:30 PM 04:45 PM 05:00 PM 05:15 PM 05:30 PM 05:45 PM 06:00 PM 06:15 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:45 PM to 05:00 PM to 05:30 PM to 05:45 PM to 05:45 PM to 06:15 PM to 06:15 PM to 06:15 PM to 06:30 PM	0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0	17 2.3% 8 18 2.6% buthbou ochuset: Thru 0 0 0 0 0 1 1	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0	0 0.0% V Mass Left 0 0 0 0	0 0.0% 0 0.0% Vestbou achuset Thru 0 0 0 0 0	0.0% 0 0.0% nd its Ave Right 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou ochuset: Thru 0 0 0 0 0 0 0 0	1.3% 1 1.5% nd is Ave Right 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0	0 0.0% 0.0% Mass Left 0 0 0 0 0	0 0.0% 1 0 0.0% astbour achuset Thru 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:30 PM 04:35 PM 05:00 PM 05:15 PM 05:30 PM 05:45 PM 06:00 PM 06:00 PM 06:30 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:30 PM to 05:00 PM to 05:30 PM to 05:30 PM to 05:35 PM to 06:00 PM to 06:00 PM to 06:15 PM	0.0% 0 0.0% U 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0 0	17 2.3% 8 18 2.6% buthbou achuset Thru 0 0 0 0 1 1 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0 0 0	0 0.0% V Mass Left 0 0 0 0 0	0 0.0% 0 0.0% Vestbou achuset Thru 0 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou achuset: Thru 0 0 0 0 0 0 0 0 0	1.3% 1 1.5% nd is Ave Right 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% U 0 0 0 0 0 0 0 0	0 0.0% 0.0% E Mass Left 0 0 0 0 0 0	0 0.0% 1 0 0.0% (astbour achuset Thru 0 0 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:30 PM 04:45 PM 05:15 PM 05:15 PM 05:45 PM 06:00 PM 06:15 PM 06:30 PM 06:30 PM 06:45 PM 06:45 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:45 PM to 05:00 PM to 05:15 PM to 05:45 PM to 06:15 PM to 06:15 PM to 06:45 PM to 06:45 PM to 06:45 PM to 07:00 PM to 07:00 PM to 07:15 PM	0.0% 0 0.0% U 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0 0 0	17 2.3% .8 18 2.6% .uuthbou achuset: Thru 0 0 0 0 0 1 1 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% V Masss Left 0 0 0 0 0 0	0 0.0% 0 0.0% Westbou achuset Thru 0 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou chuset Thru 0 0 0 0 0 0 0 0 0	1.3% 1 1.5% ond is Ave Right o o o o o o o o o o o o o		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% E Masss Left 0 0 0 0 0 0	0 0.0% 1 0 0.0% (astbour achuset Thru 0 0 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:30 PM 04:35 PM 04:35 PM 05:00 PM 05:15 PM 05:30 PM 06:15 PM 06:15 PM 06:30 PM 06:35 PM 06:35 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:30 PM to 05:00 PM to 05:00 PM to 05:30 PM to 05:45 PM to 06:30 PM to 07:30 PM	0.0% 0 0.0% U 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0 0 0	17 2.3% .8 18 2.6% .uuthbou achuset: Thru 0 0 0 0 0 1 1 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% V Masss Left 0 0 0 0 0 0	0 0.0% 0 0.0% Westbou achuset Thru 0 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou chuset Thru 0 0 0 0 0 0 0 0 0	1.3% 1 1.5% ond is Ave Right o o o o o o o o o o o o o		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% E Masss Left 0 0 0 0 0 0	0 0.0% 1 0 0.0% (astbour achuset Thru 0 0 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:35 PM 04:35 PM 05:00 PM 05:00 PM 05:03 PM 05:03 PM 06:03 PM 06:35 PM 06:35 PM 06:35 PM 06:35 PM 07:00 PM 07:30 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:30 PM to 05:30 PM to 05:30 PM to 05:30 PM to 06:30 PM to 07:30 PM to 07:30 PM to 07:30 PM	0.0% 0 0.0% U 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0 0 0	17 2.3% .8 18 2.6% .uuthbou achuset: Thru 0 0 0 0 0 1 1 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% V Masss Left 0 0 0 0 0 0	0 0.0% 0 0.0% Westbou achuset Thru 0 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou chuset Thru 0 0 0 0 0 0 0 0 0	1.3% 1 1.5% 1 1.5% ond ss Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% E Masss Left 0 0 0 0 0 0	0 0.0% 1 0 0.0% (astbour achuset Thru 0 0 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:15 PM 04:45 PM 05:00 PM 05:00 PM 05:15 PM 06:00 PM 06:15 PM 06:00 PM 07:00 PM 07:15 PM 07:15 PM 07:15 PM 07:15 PM	to 05:30 PM Vehicle % (PHV):	0.0% 0 0.0% U 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0 0 0	17 2.3% .8 18 2.6% .uuthbou achuset: Thru 0 0 0 0 0 1 1 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% V Masss Left 0 0 0 0 0 0	0 0.0% 0 0.0% Westbou achuset Thru 0 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou chuset Thru 0 0 0 0 0 0 0 0 0	1.3% 1 1.5% 1 1.5% ond ss Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% E Masss Left 0 0 0 0 0 0	0 0.0% 1 0 0.0% (astbour achuset Thru 0 0 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:30 PM 04:45 PM 05:00 PM 05:15 PM 05:30 PM 06:45 PM 06:30 PM 06:45 PM 06:30 PM 06:45 PM 07:30 PM 07:15 PM 07:30 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:30 PM to 05:30 PM to 05:30 PM to 05:30 PM to 06:30 PM to 07:30 PM to 07:30 PM to 07:30 PM	0.0% 0 0.0% U 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0 0 0	17 2.3% .8 18 2.6% .uuthbou achuset: Thru 0 0 0 0 0 1 1 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% V Masss Left 0 0 0 0 0 0	0 0.0% 0 0.0% Westbou achuset Thru 0 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou chuset Thru 0 0 0 0 0 0 0 0 0	1.3% 1 1.5% 1 1.5% ond ss Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% E Masss Left 0 0 0 0 0 0	0 0.0% 1 0 0.0% (astbour achuset Thru 0 0 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:35 PM 04:45 PM 05:00 PM 05:15 PM 05:30 PM 05:35 PM 06:35 PM 06:35 PM 06:35 PM 06:35 PM 07:30 PM 07:30 PM 07:30 PM 07:35 PM 07:35 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: to 04:15 PM to 04:45 PM to 05:00 PM to 05:00 PM to 05:45 PM to 05:45 PM to 06:30 PM to 06:15 PM to 06:45 PM to 07:15 PM to 07:30 PM to 07:45 PM to 07:45 PM to 08:00 PM to 07:45 PM to 07:45 PM to 08:00 PM to 08:00 PM	0.0% 0 0.0% U 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0 0 0	17 2.3% .8 18 2.6% .uuthbou achuset: Thru 0 0 0 0 0 1 1 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% V Masss Left 0 0 0 0 0 0	0 0.0% 0 0.0% Westbou achuset Thru 0 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% Massa Left 0 0 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou chuset Thru 0 0 0 0 0 0 0 0 0	1.3% 1 1.5% 1 1.5% ond ss Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% E Masss Left 0 0 0 0 0 0	0 0.0% 1 0 0.0% (astbour achuset Thru 0 0 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:45 PM 04:45 PM 05:00 PM 05:15 PM 05:30 PM 06:15 PM 06:30 PM 06:35 PM 06:35 PM 07:30 PM 07:15 PM 07:30 PM 07:35 PM 08:00 PM	to 05:30 PM Vehicle % (PHV): Direction: Roadway: Movement: to 04:15 PM to 04:45 PM to 05:30 PM to 05:15 PM to 05:45 PM to 06:45 PM to 06:45 PM to 06:45 PM to 07:00 PM to 07:30 PM to 08:30 PM to 08:35 PM to 08:35 PM	0.0% 0 0.0% U 0 0 0 0 0 0 0 0	0 0.0% 1 0 0 0.0% So Massa Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 2.3% 8 18 2.6% 0 0 0 0 0 1 1 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% V V Mass Left 0 0 0 0 0 0 0 0 0	0 0 0.0% 0 0 0 0.0% Vestbou achuset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0 0.0% No Massa Left 0 0 0 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou chuset Thru 0 0 0 0 0 0 0 0 0 0 0	1.3% 1 1.5% 1 1.5% ond ss Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% E Mass Left 0 0 0 0 0 0 0 0	0 0.0% 1 1 0 0.0% asstbour 0 0 0 0 0 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:35 PM 04:45 PM 05:30 PM 05:35 PM 05:30 PM 06:30 PM 06:30 PM 06:30 PM 07:30 PM 07:30 PM 07:35 PM 07:30 PM 07:30 PM 08:30 PM 08:30 PM 08:30 PM	to 05:30 PM Vehicle % (PHV):	0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% So Massa Left 0 0 0 0 0 0	17 2.3% 8 18 2.6% 0 0 0 0 1 1 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% V V Masss Left 0 0 0 0 0 0 0 0	0 0.0% 0 0 0.0% 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 1 0 0.0% NM Massa Left 0 0 0 0 0	15 1.6% 6 15 1.7% orthbou 0 0 0 0 0 0 0 0 0 0	1.3% 1		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% E Mass Left 0 0 0 0 0 0 0	0 0.0% 1 1 0 0.03% astbour 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 1 1.1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:30 PM 04:45 PM 05:00 PM 05:15 PM 05:00 PM 05:45 PM 06:00 PM 06:45 PM 07:00 PM 07:30 PM 07:30 PM 07:30 PM 08:30 PM 08:30 PM 08:30 PM 08:30 PM	to 05:30 PM Vehicle % (PHV):	0.0% 0 0.0% U 0 0 0 0 0 0 0 0	0 0.0% 1 0 0 0.0% So 0 Massa Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 2.3% 8 18 18 2.6% Uthbou 0 0 0 1 1 0 0 0 0 0 0 0 0 0 2 2 2	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% V V Masss Left 0 0 0 0 0 0 0 0	0 0.0% 0 0 0.0% Vestbou achuset Thru 0 0 0 0 0 0 0 0 0	0.0% 0 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% NO 0.0% NO 0.0% NO 0.0% NO 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 1.6% 6 15 1.7% 0 0 0 0 0 0 0 0 0 0 0 0	1.3% 1 1.5% 1 1.5% ond ss Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% E Masss Left 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% asstbour 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 1 1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0	
04:00 PM 04:15 PM 04:45 PM 04:45 PM 05:00 PM 05:00 PM 05:15 PM 05:00 PM 05:45 PM 06:30 PM 06:15 PM 06:30 PM 07:30 PM 07:30 PM 07:30 PM 07:30 PM 07:35 PM 08:30 PM 08:45 PM 08:45 PM 08:45 PM 08:45 PM	to 05:30 PM Vehicle % (PHV):	0.0% 0 0.0% U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 1 0 0.0% So 0 Massa 1 Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 2.3% 8 18 2.6% 0 0 0 0 1 1 0 0 0 0 0	0.0% 0.0% nd ts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% V V Masss Left 0 0 0 0 0 0 0 0	0 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0	0.0% 0.0% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0 0	0 0.0% 1 0 0.0% NO 0.0% NO 0.0% NO 0.0% NO 0.0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 1.6% 6 15 1.7% orthbouset Thru 0 0 0 0 0 0 0 0 0 0 0 0 0	1.3% 1		0.0% 0 0.0% 0 0 0 0 0 0 0 0 0 0	0 0.0% 0 0.0% E Masss Left 0 0 0 0 0 0 0 0	0 0 0.0% 1 0 0 0.0% asstbour achuset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 1 1.1.9% nd tts Ave Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

		0.	87		729	915					
	n/a	0.87	e/u	n/a	< 7.	↑					
	SBR	SBT	SBL	SBU	Massachusetts Ave		↑	0	WBR	n/a	
	0	729	0	0	set		\leftarrow	0	WBT	n/a	r
)	7.))	ιchι		\downarrow	0	WBL	n/a	١.
	+	\downarrow	\rightarrow	1	3550		\rightarrow	0	WBU	n/a	
0	+				й	٨	Aassach	usetts.	Ave	+	
57	\rightarrow	Ма	issachu.	setts A	re .	ve				\rightarrow	-
	n/a	EBU	0	←		ts A	\downarrow	\leftarrow	1	\rightarrow	
0.75	0.38	EBL	3	1		set	1	0	912	75	
0.75	0.50	EBT	6	\rightarrow		chu	` ')	9.	7	
	0.86	EBR	48	\downarrow		Massachusetts Ave	NBU	NBL	NBT	NBR	
						V	z	z	z	z	
					\downarrow	\wedge	0.25	u/a	0.95	69.0	

Sc Sc Sc Sc Sc Sc Sc Sc		2.3	3%			L)					
##	%0.0	2.3%	%0:0	%0.0							
0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			_		-	Ė					
	s	- 8	s	s	tts						
	0	17	0	0	nse						0.
					- do		\downarrow	0	WBL	0.0%	
	←	V	\rightarrow	\uparrow	7550		\rightarrow	0	WBU	0.0%	
0	\				W	٨	1assach	usetts	4 <i>ve</i>	\downarrow	(
0.0% EBU 0	\rightarrow	Ма	issachu.	setts Av	re	ve				\rightarrow	- :
0.00	0.0%	EBU	0	←		S.A	\downarrow	\leftarrow	\uparrow	\rightarrow	
0.0% EBT 0	0.0%	EBL	0	1		sett		_	2		
0.00/ ERR 0	0.0%	EBT	0	\rightarrow		chu	0	0	Ħ	-	
0.0% EBK 0 V 28 28 18 18 18	0.0%	EBR	0	\downarrow		assa	90	BL	HB.	BR	
						Z	Z	z	z	z	
							0	0.	9	1.3	
		0 ≥ ≥ 0 ≥ ≥ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	288	See See See	0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mossochusetts Ave 11 Mossochusetts Ave 12 Mossochusetts Ave 13 Mossochusetts Ave 14 Mossochusetts Ave 15 Mossochusetts Ave 17 Mossochusetts Ave 17 Mossochusetts Ave 17 Mossochusetts Ave 18 Mossochusetts Ave 17 Mossochusetts Ave 18 Mossochusetts Ave 18 Mossochusetts Ave 19 Mossochusetts Ave	288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nossachusetts Ave	NBN NBN	ST ST ST ST ST ST ST ST	ST ST ST ST ST ST ST ST

DATA COLLECTION NOTES:

H. Vehicular Ca	pacity Analysis V	Vorksheets –	2021 Existing (Conditions

10/22/2021

	*)	×	×
	057	050	NIVA/T	OME
Lane Group	SET	SER	NWT	SWT
Lane Group Flow (vph)	1229	8	677	152
v/c Ratio	0.62	0.01	0.37	0.57
Control Delay	11.2	5.5	2.6	52.1
Queue Delay	0.0	0.0	0.2	0.0
Total Delay	11.2	5.5	2.9	52.1
Queue Length 50th (ft)	237	2	18	106
Queue Length 95th (ft)	299	6	24	179
Internal Link Dist (ft)	282		152	19
Turn Bay Length (ft)		90		
Base Capacity (vph)	1988	829	1820	265
Starvation Cap Reductn	0	0	445	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.62	0.01	0.49	0.57
Interesetion Commence				
Intersection Summary				

	₩.	\mathbf{x}	À	F	×	₹	7	*	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		^	7		414						4	
Traffic Volume (vph)	0	1168	8	13	630	0	0	0	0	85	57	3
Future Volume (vph)	0	1168	8	13	630	0	0	0	0	85	57	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	12	12	12	9	9	9
Grade (%)		7%			-7%			0%			7%	
Total Lost time (s)		4.0	4.0		4.0						4.0	
Lane Util. Factor		0.95	1.00		0.95						1.00	
Frpb, ped/bikes		1.00	0.96		1.00						1.00	
Flpb, ped/bikes		1.00	1.00		1.00						1.00	
Frt		1.00	0.85		1.00						1.00	
Flt Protected		1.00	1.00		1.00						0.97	
Satd. Flow (prot)		2841	1185		2837						1269	
Flt Permitted		1.00	1.00		0.92						0.97	
Satd. Flow (perm)		2841	1185		2602						1269	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	1229	8	14	663	0	0	0	0	89	60	3
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	1229	8	0	677	0	0	0	0	0	151	0
Confl. Peds. (#/hr)	19		28	28		19	5					5
Confl. Bikes (#/hr)			2									1
Heavy Vehicles (%)	3%	3%	3%	5%	5%	5%	0%	0%	0%	2%	2%	2%
Bus Blockages (#/hr)	0	0	7	0	0	0	0	0	0	0	0	0
Parking (#/hr)					0					0	0	0
Turn Type		NA	Perm	Perm	NA					Split	NA	
Protected Phases		6			2					4	4	
Permitted Phases			6	2								
Actuated Green, G (s)		82.0	82.0		82.0						23.0	
Effective Green, g (s)		84.0	84.0		84.0						25.0	
Actuated g/C Ratio		0.70	0.70		0.70						0.21	
Clearance Time (s)		6.0	6.0		6.0						6.0	
Lane Grp Cap (vph)		1988	829		1821						264	
v/s Ratio Prot		c0.43									c0.12	
v/s Ratio Perm			0.01		0.26							
v/c Ratio		0.62	0.01		0.37						0.57	
Uniform Delay, d1		9.5	5.4		7.3						42.7	
Progression Factor		1.00	1.00		0.28						1.00	
Incremental Delay, d2		1.5	0.0		0.6						8.7	
Delay (s)		11.0	5.5		2.6						51.4	
Level of Service		В	Α		Α						D	
Approach Delay (s)		10.9			2.6			0.0			51.4	
Approach LOS		В			А			Α			D	
Intersection Summary												
HCM 2000 Control Delay			11.2	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacit	y ratio		0.60									
Actuated Cycle Length (s)			120.0	Sı	um of lost	time (s)			10.0			
Intersection Capacity Utilization	n		55.0%			of Service			В			
Analysis Period (min)			15									

Existing 2021 AM Peak

c Critical Lane Group

Existing 2021 Synchro 10 Report Page 3 AM Peak

	→	\rightarrow	•	←	4	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\$					7
Traffic Volume (veh/h)	46	15	0	0	0	37
Future Volume (Veh/h)	46	15	0	0	0	37
Sign Control	Free			Free	Yield	
Grade	5%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	51	17	0	0	0	41
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			68		60	60
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			68		60	60
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			100		100	96
cM capacity (veh/h)			1533		947	1006
Direction, Lane #	EB 1	NB 1				
Volume Total	68	41				
Volume Left	0	0				
Volume Right	17	41				
cSH	1700	1006				
Volume to Capacity	0.04	0.04				
Queue Length 95th (ft)	0.04	3				
Control Delay (s)	0.0	8.7				
Lane LOS	0.0	Α				
Approach Delay (s)	0.0	8.7				
Approach LOS	0.0	Α				
•						
Intersection Summary						
Average Delay			3.3			
Intersection Capacity Utiliza	tion		13.3%	IC	U Level c	of Service
Analysis Period (min)			15			

Existing 2021 Synchro 10 Report Page 4 AM Peak

Synchro 10 Report Page 5

	•		•	•	•
3: Wesley	Cir NW	& Massachus	setts	Ave NW	

	ኘ	†	۴	Ļ	↓	W J	•	×	\	€	×	•
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4						^			Φ₽	
Traffic Volume (veh/h)	6	2	75	0	0	0	0	1253	0	0	652	34
Future Volume (Veh/h)	6	2	75	0	0	0	0	1253	0	0	652	34
Sign Control		Stop			Stop			Free			Free	
Grade		5%			0%			0%			-7%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	6	2	77	0	0	0	0	1279	0	0	665	35
Pedestrians					16							
Lane Width (ft)					0.0							
Walking Speed (ft/s)					4.0							
Percent Blockage					0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								232			230	
pX, platoon unblocked	0.78	0.78	0.78	0.78	0.78					0.78		
vC, conflicting volume	1612	1995	640	1416	1978	366	716			1279		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1225	1715	0	975	1693	366	716			800		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.2			4.2		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	94	97	91	100	100	100	100			100		
cM capacity (veh/h)	105	69	848	143	72	631	874			635		
Direction, Lane #	NB 1	SE 1	SE 2	NW 1	NW 2							
Volume Total	85	640	640	443	257							
Volume Left	6	0	0	0	0							
Volume Right	77	0	0	0	35							
cSH	481	1700	1700	1700	1700							
Volume to Capacity	0.18	0.38	0.38	0.26	0.15							
Queue Length 95th (ft)	16	0.50	0.50	0.20	0.13							
Control Delay (s)	14.1	0.0	0.0	0.0	0.0							
Lane LOS	14.1 B	0.0	0.0	0.0	0.0							
Approach Delay (s)	14.1	0.0		0.0								
Approach LOS	В	0.0		0.0								
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utilizat	tion		50.8%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

Existing 2021 AM Peak

4: University Ave NW & Sedgwick St NW/WTS Dwy

	۶	-	•	•	←	•	1	†	<i>></i>	/	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			1>	
Traffic Volume (veh/h)	4	0	2	1	1	4	1	25	0	0	14	1
Future Volume (Veh/h)	4	0	2	1	1	4	1	25	0	0	14	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	4	0	2	1	1	4	1	28	0	0	16	1
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	51	46	16	48	47	28	17			28		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	51	46	16	48	47	28	17			28		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	943	845	1063	950	844	1047	1600			1585		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	6	6	29	17								
Volume Left	4	1	1	0								
Volume Right	2	4	0	1								
cSH	980	990	1600	1700								
Volume to Capacity	0.01	0.01	0.00	0.01								
Queue Length 95th (ft)	0.01	0	0	0.01								
Control Delay (s)	8.7	8.7	0.3	0.0								
Lane LOS	A	A	A	0.0								
Approach Delay (s)	8.7	8.7	0.3	0.0								
Approach LOS	A	A	0.0	0.0								
Intersection Summary												
Average Delay			1.9									
Intersection Capacity Utiliza	ation		13.3%	IC	ill evel	of Service			Α			
Analysis Period (min)	ation		15.5 %	ic	O LEVEI (JI OGI VICE						

Existing 2021 AM Peak

5: Massachusetts Ave NW & 45th St NW

10/22/2021

	`*	×	(
Lane Group	SET	NWT	SWL
Lane Group Flow (vph)	1476	768	30
v/c Ratio	0.54	0.23	0.02
Control Delay	1.2	0.1	0.0
Queue Delay	0.0	0.0	0.0
Total Delay	1.2	0.1	0.0
Queue Length 50th (ft)	18	0	0
Queue Length 95th (ft)	3	0	0
Internal Link Dist (ft)	150	66	207
Turn Bay Length (ft)			
Base Capacity (vph)	2742	3405	1587
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.54	0.23	0.02
Intersection Summary			

5: Massachusetts Ave NW & 45th St NW

	4	\mathbf{x}	*	₹	Ĺ	*			
Movement	SEL	SET	NWT	NWR	SWL	SWR			
Lane Configurations		414	ħβ		W				
Traffic Volume (vph)	63	1265	673	18	14	13			
Future Volume (vph)	63	1265	673	18	14	13			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Grade (%)	,,,,,	4%	-7%	,,,,,	0%				
Total Lost time (s)		9.0	9.0		9.0				
Lane Util. Factor		0.95	0.95		1.00				
Frt		1.00	1.00		0.94				
Flt Protected		1.00	1.00		0.97				
Satd. Flow (prot)		3230	3406		1587				
Flt Permitted		0.85	1.00		0.97				
Satd. Flow (perm)		2742	3406		1587				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90			
Adj. Flow (vph)	70	1406	748	20	16	14			
RTOR Reduction (vph)	0	0	0	0	0	0			
Lane Group Flow (vph)	0	1476	768	0	30	0			
Turn Type	Perm	NA	NA		D.Pm				
Protected Phases	I GIIII	2!	2!		ווו ו.ט				
Permitted Phases	2!	Z:	۷:		2!				
Actuated Green, G (s)	۷.	120.0	120.0		120.0				
Effective Green, g (s)		120.0	120.0		120.0				
Actuated g/C Ratio		1.00	1.00		1.00				
Clearance Time (s)		11.0	11.0		11.0				
Vehicle Extension (s)		1.0	1.0		1.0				
		2742	3406		1587				
Lane Grp Cap (vph) v/s Ratio Prot		2142	0.23		1307				
v/s Ratio Perm		c0.54	0.23		0.02				
v/c Ratio Perm		0.54	0.23		0.02				
		0.54	0.23		0.02				
Uniform Delay, d1		1.00	1.00		1.00				
Progression Factor		0.7	0.1		0.0				
Incremental Delay, d2		0.7	0.1		0.0				
Delay (s) Level of Service		0.7 A	0.1 A		0.0 A				
		0.7	0.1		0.0				
Approach Delay (s) Approach LOS		0.7 A	0.1 A		0.0 A				
Intersection Summary									
HCM 2000 Control Delay			0.5	Ц	CM 2000	Level of Service		A	
	oity ratio		0.60	П	CIVI ZUUU	Level of Service	<u> </u>	Α	
HCM 2000 Volume to Capa Actuated Cycle Length (s)	icity ratio		120.0	C	um of look	time (s)		13.0	
Intersection Capacity Utiliza	ntion				um of lost	of Service		13.0 E	
Analysis Period (min)	atiOH		86.8%	IC	Level (Service		С	
	lana arai::a		15						
! Phase conflict between I	ane groups								

Critical Lane Group

Existing 2021 AM Peak

	ሻ	r*	\mathbf{x}	>	•	*
Movement	NBL	NBR	SET	SER	NWL	NWT
Lane Configurations		7	ħβ			र्स
Traffic Volume (veh/h)	0	7	1272	7	18	691
Future Volume (Veh/h)	0	7	1272	7	18	691
Sign Control	Stop		Free			Free
Grade	0%		4%			-7%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	8	1413	8	20	768
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)			214			651
pX, platoon unblocked	0.76		,			
vC, conflicting volume	2225	710			1421	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	2448	710			1421	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	98			96	
cM capacity (veh/h)	19	376			475	
Direction, Lane #	NB 1	SE 1	SE 2	NW 1		
Volume Total	8	942	479	788		
Volume Left	0	0	0	20		
Volume Right	8	0	8	0		
cSH	376	1700	1700	475		
Volume to Capacity	0.02	0.55	0.28	0.04		
	0.02	0.55	0.20	3		
Queue Length 95th (ft) Control Delay (s)	14.8	0.0	0.0	1.3		
		0.0	0.0			
Lane LOS	14 O	0.0		A		
Approach LOS	14.8	0.0		1.3		
Approach LOS	В					
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utiliza	ition		54.2%	IC	U Level	of Service
Analysis Period (min)			15			

Existing 2021 Synchro 10 Report Page 9 AM Peak

7: Glover Gate/Katzen Arts Center Dwy & Massachusetts Ave NW

10/22/2021

	*	×	₹	×	4	K
Lane Group	SET	NWT	NWR	NET	NER	SWT
Lane Group Flow (vph)	1391	754	65	30	36	29
v/c Ratio	0.70	0.66	0.08	0.25	0.24	0.15
Control Delay	12.1	11.0	1.1	52.6	7.3	42.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.1	11.0	1.1	52.6	7.3	42.3
Queue Length 50th (ft)	286	250	0	21	0	17
Queue Length 95th (ft)	394	370	10	52	12	46
Internal Link Dist (ft)	571	391		281		141
Turn Bay Length (ft)						
Base Capacity (vph)	1995	1137	863	120	148	188
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.70	0.66	0.08	0.25	0.24	0.15
Intersection Summary						

7: Glover Gate/Katzen Arts Center Dwy & Massachusetts Ave NW

	•	\mathbf{x}	À	F	×	₹	ን	×	~	Ĺ	K	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		414			†	7		4	7		4	
Traffic Volume (vph)	22	1179	78	11	683	60	21	6	33	4	18	5
Future Volume (vph)	22	1179	78	11	683	60	21	6	33	4	18	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	10	10	10	10	10	10
Grade (%)		4%			-4%			-1%			5%	
Total Lost time (s)		4.0			4.0	4.0		4.0	4.0		4.0	
Lane Util. Factor		0.95			1.00	1.00		1.00	1.00		1.00	
Frpb, ped/bikes		1.00			1.00	0.86		1.00	0.67		0.98	
Flpb, ped/bikes		1.00			1.00	1.00		0.93	1.00		0.96	
Frt		0.99			1.00	0.85		1.00	0.85		0.98	
Flt Protected		1.00			1.00	1.00		0.96	1.00		0.99	
Satd. Flow (prot)		2845			1564	1130		1089	694		1417	
Flt Permitted		0.93			0.97	1.00		0.80	1.00		0.97	
Satd. Flow (perm)		2655			1516	1130		904	694		1383	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	24	1282	85	12	742	65	23	7	36	4	20	5
RTOR Reduction (vph)	0	4	0	0	0	16	0	0	31	0	4	0
Lane Group Flow (vph)	0	1387	0	0	754	49	0	30	5	0	25	0
Confl. Peds. (#/hr)	19		8	8		19	22		160	160		22
Confl. Bikes (#/hr)			1									
Heavy Vehicles (%)	3%	3%	3%	4%	4%	4%	32%	32%	32%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	2	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		6			2			8			4	
Permitted Phases	6			2		2	8		8	4		
Actuated Green, G (s)		88.0			88.0	88.0		14.0	14.0		14.0	
Effective Green, g (s)		90.0			90.0	90.0		16.0	16.0		16.0	
Actuated g/C Ratio		0.75			0.75	0.75		0.13	0.13		0.13	
Clearance Time (s)		6.0			6.0	6.0		6.0	6.0		6.0	
Lane Grp Cap (vph)		1991			1137	847		120	92		184	
v/s Ratio Prot												
v/s Ratio Perm		c0.52			0.50	0.04		c0.03	0.01		0.02	
v/c Ratio		0.70			0.66	0.06		0.25	0.05		0.13	
Uniform Delay, d1		7.9			7.5	3.9		46.6	45.4		45.9	
Progression Factor		1.29			1.00	1.00		1.00	1.00		1.00	
Incremental Delay, d2		1.8			3.1	0.1		4.9	1.1		1.5	
Delay (s)		11.9			10.5	4.0		51.5	46.5		47.4	
Level of Service		В			В	Α		D	D		D	
Approach Delay (s)		11.9			10.0			48.8			47.4	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			12.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	ratio		0.62									
Actuated Cycle Length (s)			120.0		um of los				12.0			
Intersection Capacity Utilization	1		74.9%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Existing 2021 AM Peak

10/22/2021

	X	Ì	×	K
		-	A 13 A / T	OME
Lane Group	SET	SER	NWT	SWT
Lane Group Flow (vph)	1005	6	1116	131
v/c Ratio	0.49	0.01	0.55	0.64
Control Delay	6.9	3.8	4.1	62.5
Queue Delay	0.0	0.0	0.1	0.0
Total Delay	6.9	3.8	4.2	62.5
Queue Length 50th (ft)	138	1	71	95
Queue Length 95th (ft)	176	4	84	#175
Internal Link Dist (ft)	290		149	39
Turn Bay Length (ft)		90		
Base Capacity (vph)	2064	824	2032	204
Starvation Cap Reductn	0	0	205	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.49	0.01	0.61	0.64
Interception Cummers				
Intersection Summary				

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

~ * * * * * * * * * * * * * * * * * * *	*
Movement SEL SET SER NWL NWT NWR NEL NET NER SWL SV	T SWR
Lane Configurations †† † †)
	2 3
Future Volume (vph) 0 965 6 35 1037 0 0 0 91	2 3
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	0 1900
Lane Width 10 10 10 10 10 12 12 9	9 9
Grade (%) 7% -7% 0% 7	%
Total Lost time (s) 4.0 4.0 4.0	.0
Lane Util. Factor 0.95 1.00 0.95 1.	0
Frpb, ped/bikes 1.00 0.96 1.00 1.	0
Flpb, ped/bikes 1.00 1.00 1.00 1.00	0
Frt 1.00 0.85 1.00 1.	0
Flt Protected 1.00 1.00 1.00 0.	7
Satd. Flow (prot) 2752 1099 3071 12	5
Flt Permitted 1.00 1.00 0.88 0.	7
Satd. Flow (perm) 2752 1099 2711 12	5
Peak-hour factor, PHF 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96	0.96
	3 3
RTOR Reduction (vph) 0 0 0 0 0 0 0 0 0	1 0
	0 0
Confl. Peds. (#/hr) 7 28 28 7 7	7
Confl. Bikes (#/hr) 2	1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	% 0%
Bus Blockages (#/hr) 0 0 5 0 5 0 0 0 0	0 0
Parking (#/hr) 0 0 0	0 0
	A
Protected Phases 6 2 4	4
Permitted Phases 6 2	
Actuated Green, G (s) 88.0 88.0 17	.0
Effective Green, g (s) 90.0 90.0 19	
Actuated g/C Ratio 0.75 0.75 0.75 0.75	
	.0
	13
v/s Ratio Prot 0.37 c0.	
v/s Ratio Perm 0.01 c0.41	
v/c Ratio 0.49 0.01 0.55 0.	4
Uniform Delay, d1 5.9 3.8 6.4 47	
Progression Factor 1.00 1.00 0.47 1.	
	.5
Delay (s) 6.7 3.8 4.0 6 ²	
Level of Service A A A	E
Approach Delay (s) 6.7 4.0 0.0 6 ²	
Approach LOS A A A	Ē
Intersection Summary	
HCM 2000 Control Delay 8.6 HCM 2000 Level of Service A	
HCM 2000 Volume to Capacity ratio 0.56	
Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0	
Intersection Capacity Utilization 79.2% ICU Level of Service D	
Analysis Period (min) 15	

Existing 2021 PM Peak

c Critical Lane Group

Existing 2021 Synchro 10 Report Page 3 PM Peak

	→	\rightarrow	•	←	4	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\$					7
Traffic Volume (veh/h)	33	26	0	0	0	41
Future Volume (Veh/h)	33	26	0	0	0	41
Sign Control	Free			Free	Yield	
Grade	5%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	37	29	0	0	0	46
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			66		52	52
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			66		52	52
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			100		100	95
cM capacity (veh/h)			1536		957	1016
Direction, Lane #	EB 1	NB 1				
Volume Total	66	46				
Volume Left	0	0				
Volume Right	29	46				
cSH	1700	1016				
Volume to Capacity	0.04	0.05				
Queue Length 95th (ft)	0	4				
Control Delay (s)	0.0	8.7				
Lane LOS		Α				
Approach Delay (s)	0.0	8.7				
Approach LOS		Α				
Intersection Summary						
Average Delay			3.6			
Intersection Capacity Utiliza	ation		13.3%	IC	U Level o	of Service
Analysis Period (min)			15			
Analysis Period (min)			15			

Existing 2021 Synchro 10 Report Page 4 PM Peak

Average Delay

Analysis Period (min)

Intersection Capacity Utilization

3: Wesley Cir NW & Massachusetts Ave NW											10/2	22/2021
	ሻ	†	۴	Ų,	ļ	w	•	\mathbf{x}	7	€	*	*
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4						^			↑ ↑	
Traffic Volume (veh/h)	15	6	48	0	0	0	0	1056	0	0	1067	75
Future Volume (Veh/h)	15	6	48	0	0	0	0	1056	0	0	1067	75
Sign Control		Stop			Stop			Free			Free	
Grade		5%			0%			0%			-7%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	16	6	50	0	0	0	0	1100	0	0	1111	78
Pedestrians					7							
Lane Width (ft)					0.0							
Walking Speed (ft/s)					4.0							
Percent Blockage					0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								229			230	
pX, platoon unblocked	0.87	0.87	0.87	0.87	0.87					0.87		
vC, conflicting volume	1656	2296	550	1760	2257	602	1196			1100		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1453	2190	180	1573	2145	602	1196			813		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	80	85	93	100	100	100	100			100		
cM capacity (veh/h)	79	39	722	53	42	443	585			709		
Direction, Lane #	NB 1	SE 1	SE 2	NW 1	NW 2							
Volume Total	72	550	550	741	448							
Volume Left	16	0	0	0	0							
Volume Right	50	0	0	0	78							
cSH	169	1700	1700	1700	1700							
Volume to Capacity	0.43	0.32	0.32	0.44	0.26							
Queue Length 95th (ft)	48	0	0	0	00							
Control Delay (s)	41.3	0.0	0.0	0.0	0.0							
Lane LOS	E	7.0	J.0									
Approach Delay (s)	41.3	0.0		0.0								
Approach LOS	E	3.0		0.0								
Intersection Summary												

Existing 2021 Synchro 10 Report PM Peak Page 5

ICU Level of Service

Α

1.3

15

46.7%

4: University Ave NW & Sedgwick St NW/WTS Dwy

	۶	-	•	•	←	•	4	†	<i>></i>	/	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स			1>	
Traffic Volume (veh/h)	5	0	1	1	6	12	1	8	0	0	21	5
Future Volume (Veh/h)	5	0	1	1	6	12	1	8	0	0	21	5
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	6	0	1	1	7	13	1	9	0	0	23	6
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	54	37	26	38	40	9	29			9		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	54	37	26	38	40	9	29			9		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	100	100	100	99	99	100			100		
cM capacity (veh/h)	927	855	1050	966	852	1073	1584			1611		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	7	21	10	29								
Volume Left	6	1	1	0								
Volume Right	1	13	0	6								
cSH	943	982	1584	1700								
Volume to Capacity	0.01	0.02	0.00	0.02								
Queue Length 95th (ft)	1	2	0	0								
Control Delay (s)	8.8	8.7	0.7	0.0								
Lane LOS	A	A	A	0.0								
Approach Delay (s)	8.8	8.7	0.7	0.0								
Approach LOS	A	A	0	0.0								
Intersection Summary												
Average Delay			3.8									
Intersection Capacity Utiliza	ation		13.3%	IC	CU Level	of Service			Α			
Analysis Period (min)	A.O.I.		15.570	10	.5 20001	J. COI VIOC			/\			

Existing 2021 PM Peak Synchro 10 Report Page 6

5: Massachusetts Ave NW & 45th St NW

10/22/2021

	*	×	Ĺ
Lane Group	SET	NWT	SWL
Lane Group Flow (vph)	1227	1300	73
v/c Ratio	0.45	0.38	0.04
Control Delay	0.7	0.3	0.0
Queue Delay	0.0	0.0	0.0
Total Delay	0.7	0.3	0.0
Queue Length 50th (ft)	6	0	0
Queue Length 95th (ft)	0	0	0
Internal Link Dist (ft)	150	66	258
Turn Bay Length (ft)			
Base Capacity (vph)	2729	3402	1637
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.45	0.38	0.04
Intersection Summary			
Intersection Summary			

5: Massachusetts Ave NW & 45th St NW

	4	\mathbf{x}	×	₹	Ĺ	*		
Movement	SEL	SET	NWT	NWR	SWL	SWR		
Lane Configurations	OLL	41	†	ITTT	W	OWN		
Traffic Volume (vph)	35	1069	1133	37	57	9		
Future Volume (vph)	35	1069	1133	37	57	9		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Grade (%)	1000	4%	-7%	1000	0%	1000		
Total Lost time (s)		9.0	9.0		9.0			
Lane Util. Factor		0.95	0.95		1.00			
Frt		1.00	1.00		0.98			
Flt Protected		1.00	1.00		0.96			
Satd. Flow (prot)		3232	3403		1636			
Flt Permitted		0.84	1.00		0.96			
Satd. Flow (perm)		2728	3403		1636			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	39	1188	1259	41	63	10		
RTOR Reduction (vph)	0	0	0	0	0	0		
Lane Group Flow (vph)	0	1227	1300	0	73	0		
Turn Type	Perm	NA	NA		D.Pm			
Protected Phases	. 51111	2!	2!		D., III			
Permitted Phases	2!				2!			
Actuated Green, G (s)		120.0	120.0		120.0			
Effective Green, g (s)		120.0	120.0		120.0			
Actuated g/C Ratio		1.00	1.00		1.00			
Clearance Time (s)		11.0	11.0		11.0			
Vehicle Extension (s)		1.0	1.0		1.0			
Lane Grp Cap (vph)		2728	3403		1636			
v/s Ratio Prot		,	0.38					
v/s Ratio Perm		c0.45			0.04			
v/c Ratio		0.45	0.38		0.04			
Uniform Delay, d1		0.0	0.0		0.0			
Progression Factor		1.00	1.00		1.00			
Incremental Delay, d2		0.5	0.3		0.1			
Delay (s)		0.5	0.3		0.1			
Level of Service		Α	Α		Α			
Approach Delay (s)		0.5	0.3		0.1			
Approach LOS		Α	Α		Α			
Intersection Summary								
HCM 2000 Control Delay			0.4	Н	CM 2000	Level of Service)	Α
HCM 2000 Volume to Capac	ity ratio		0.50					
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)		13.0
Intersection Capacity Utilizati	ion		78.3%			of Service		D
Analysis Period (min)			15					
! Phase conflict between la	ne groups							

c Critical Lane Group

Existing 2021 PM Peak

	ሻ	r4	\mathbf{x}	>	€	*
Movement	NBL	NBR	SET	SER	NWL	NWT
Lane Configurations		7	f)			4₽
Traffic Volume (veh/h)	0	18	1111	15	16	1170
Future Volume (Veh/h)	0	18	1111	15	16	1170
Sign Control	Stop		Free			Free
Grade	0%		4%			-7%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	20	1234	17	18	1300
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)			219			646
pX, platoon unblocked	0.11	0.02	-		0.02	
vC, conflicting volume	1928	1242			1251	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	0	0			0	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	13			48	
cM capacity (veh/h)	55	23			34	
Direction, Lane #	NB 1	SE 1	NW 1	NW 2		
Volume Total	20	1251	451	867		
Volume Left	0	0	18	007		
Volume Right	20	17	0	0		
cSH	23	1700	34	1700		
Volume to Capacity	0.87	0.74	0.52	0.51		
Queue Length 95th (ft)	64	0.74	44	0.51		
Control Delay (s)	380.1	0.0	136.8	0.0		
Lane LOS	560.1	0.0	F	0.0		
	380.1	0.0	46.8			
Approach LOS		0.0	40.0			
Approach LOS	F					
Intersection Summary						
Average Delay			26.8			
Intersection Capacity Utiliza	ation		69.4%	IC	U Level	of Service
Analysis Period (min)			15			

Existing 2021 Synchro 10 Report Page 9 PM Peak

Existing 2021 11/10/2021

Summary of All Intervals

Run Number	1	2	3	2841)\Analysis\\$5yr	nchro\EX PM	Avg
Start Time	4:45	4:45	4:45	4:45	4:45	4:45	4:45
End Time	6:00	6:00	6:00	6:00	6:00	6:00	6:00
Total Time (min)	75	75	75	75	75	75	75
Time Recorded (min)	60	60	60	60	60	60	60
# of Intervals	2	2	2	2	2	2	2
# of Recorded Intervals	1	1	1	1	1	1	1
Vehs Entered	2528	2572	2627	2598	2660	2529	2587
Vehs Exited	2480	2521	2620	2533	2628	2514	2550
Starting Vehs	116	122	138	106	119	143	116
Ending Vehs	164	173	145	171	151	158	159
Travel Distance (mi)	1303	1336	1386	1344	1391	1324	1347
Travel Time (hr)	210.7	152.3	185.8	179.5	163.9	256.5	191.4
Total Delay (hr)	165.0	105.2	137.1	132.3	115.2	209.8	144.1
Total Stops	3624	3857	4116	3890	4027	3458	3827
Fuel Used (gal)	82.9	69.8	79.4	76.4	73.5	93.6	79.3

Interval #0 Information Seeding

Start Time	4:45
End Time	5:00
Total Time (min)	15
Values as adjusted by Craudb	Castana

Volumes adjusted by Growth Factors.

No data recorded this interval.

Interval #1 Information Recording

Start Time	5:00
End Time	6:00
Total Time (min)	60

Volumes adjusted by Growth Factors.

Run Number	1	2	3	2841)\Analysis\S5yı	nchro\EX PM	Avg
Vehs Entered	2528	2572	2627	2598	2660	2529	2587
Vehs Exited	2480	2521	2620	2533	2628	2514	2550
Starting Vehs	116	122	138	106	119	143	116
Ending Vehs	164	173	145	171	151	158	159
Travel Distance (mi)	1303	1336	1386	1344	1391	1324	1347
Travel Time (hr)	210.7	152.3	185.8	179.5	163.9	256.5	191.4
Total Delay (hr)	165.0	105.2	137.1	132.3	115.2	209.8	144.1
Total Stops	3624	3857	4116	3890	4027	3458	3827
Fuel Used (gal)	82.9	69.8	79.4	76.4	73.5	93.6	79.3

The Standard at WTS
GS
SimTraffic Report
Page 1

Existing 2021 11/10/2021

6: WTS Dwy & Massachusetts Ave NW Performance by approach

Approach	NB	SE	NW	All
Denied Del/Veh (s)	0.1	0.0	0.0	0.0
Total Del/Veh (s)	31.4	1.3	4.8	3.4

The Standard at WTS
GS
SimTraffic Report
Page 2

Existing 2021 11/10/2021

Intersection: 6: WTS Dwy & Massachusetts Ave NW

Movement	NB	SE	B918	NW	NW
Directions Served	R	TR	T	LT	T
Maximum Queue (ft)	56	33	4	266	262
Average Queue (ft)	16	1	0	70	55
95th Queue (ft)	43	16	3	216	192
Link Distance (ft)	240	22	87	582	582
Upstream Blk Time (%)		0			
Queuing Penalty (veh)		0			
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

The Standard at WTS
GS
SimTraffic Report
Page 3

7: Glover Gate/Katzen Arts Center Dwy & Massachusetts Ave NW

10/22/2021

	*	×	×	~	×
Lane Group	SET	NWT	NET	NER	SWT
Lane Group Flow (vph)	1201	1224	74	88	73
v/c Ratio	0.69	0.62	0.41	0.45	0.33
Control Delay	10.6	10.8	52.0	17.0	30.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	10.6	10.8	52.0	17.0	30.7
Queue Length 50th (ft)	210	230	52	0	28
Queue Length 95th (ft)	242	291	102	52	74
Internal Link Dist (ft)	566	391	281		141
Turn Bay Length (ft)					
Base Capacity (vph)	1747	1971	179	194	224
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.69	0.62	0.41	0.45	0.33
Intersection Summary					

7: Glover Gate/Katzen Arts Center Dwy & Massachusetts Ave NW

	•	\mathbf{x}	À	~	*	*	7	×	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4î>			↑ ↑			ર્ન	7		4	
Traffic Volume (vph)	21	1012	96	15	1093	42	61	8	83	19	18	32
Future Volume (vph)	21	1012	96	15	1093	42	61	8	83	19	18	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	10	10	10	10	10	10
Grade (%)		4%			-4%			-1%			5%	
Total Lost time (s)		4.0			4.0			4.0	4.0		4.0	
Lane Util. Factor		0.95			0.95			1.00	1.00		1.00	
Frpb, ped/bikes		0.98			0.99			1.00	0.54		0.96	
Flpb, ped/bikes		1.00			1.00			0.94	1.00		0.89	
Frt		0.99			0.99			1.00	0.85		0.94	
Flt Protected		1.00			1.00			0.96	1.00		0.99	
Satd. Flow (prot)		2701			2996			1381	697		1221	
Flt Permitted		0.91			0.93			0.71	1.00		0.91	
Satd. Flow (perm)		2459			2781			1025	697		1132	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	22	1077	102	16	1163	45	65	9	88	20	19	34
RTOR Reduction (vph)	0	6	0	0	2	0	0	0	73	0	26	0
Lane Group Flow (vph)	0	1195	0	0	1222	0	0	74	15	0	47	0
Confl. Peds. (#/hr)	21		41	41		21	32		428	428		32
Confl. Bikes (#/hr)			3			1						
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	5%	5%	5%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	5	5	0	0	0	0	0	0
Parking (#/hr)	0	0	0									
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		6			2			8			4	
Permitted Phases	6			2			8		8	4		
Actuated Green, G (s)		83.0			83.0			19.0	19.0		19.0	
Effective Green, g (s)		85.0			85.0			21.0	21.0		21.0	
Actuated g/C Ratio		0.71			0.71			0.18	0.18		0.18	
Clearance Time (s)		6.0			6.0			6.0	6.0		6.0	
Lane Grp Cap (vph)		1741			1969			179	121		198	
v/s Ratio Prot												
v/s Ratio Perm		c0.49			0.44			c0.07	0.02		0.04	
v/c Ratio		0.69			0.62			0.41	0.13		0.24	
Uniform Delay, d1		9.9			9.1			44.0	41.8		42.6	
Progression Factor		0.85			1.00			1.00	1.00		1.00	
Incremental Delay, d2		2.1			1.5			6.9	2.2		2.8	
Delay (s)		10.5			10.6			50.9	43.9		45.4	
Level of Service		В			В			D	D		D	
Approach Delay (s)		10.5			10.6			47.1			45.4	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.7	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.62									
Actuated Cycle Length (s)			120.0	Sı	um of lost	time (s)			12.0			
Intersection Capacity Utilization	on		72.3%	IC	CU Level o	of Service	!		С			
Analysis Period (min)			15									

Existing 2021 PM Peak

Appendix H - Vehicular Capacity Analysis Worksheets - 2021 Existing Conditions HCM Signalized Intersection Capacity Analysis

The section of the section of

The Standard at WTS 10/22/2021

7: Glover Gate/Katzen Arts Center Dwy & Massachusetts Ave NW

c Critical Lane Group

Synchro 10 Report Existing 2021 Page 12 PM Peak

Vehicular Ca	pacity Analysis	Worksheets	– 2024 Bac	kground Cor	nditions

10/22/2021

	₩	\mathbf{x}	À	F	×	₹	7	×	~	Ĺ	K	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		† †	7		41∱						4	
Traffic Volume (vph)	0	1179	8	13	632	0	0	0	0	85	57	3
Future Volume (vph)	0	1179	8	13	632	0	0	0	0	85	57	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	12	12	12	9	9	9
Grade (%)		7%			-7%			0%			7%	
Total Lost time (s)		4.0	4.0		4.0						4.0	
Lane Util. Factor		0.95	1.00		0.95						1.00	
Frpb, ped/bikes		1.00	0.96		1.00						1.00	
Flpb, ped/bikes		1.00	1.00		1.00						1.00	
Frt		1.00	0.85		1.00						1.00	
Fit Protected		1.00	1.00		1.00						0.97	
Satd. Flow (prot)		2841	1185		2837						1269	
Flt Permitted		1.00	1.00		0.92						0.97	
Satd. Flow (perm)		2841	1185		2601						1269	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	1241	8	14	665	0	0	0	0	89	60	3
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	1241	8	0	679	0	0	0	0	0	151	0
Confl. Peds. (#/hr)	19		28	28		19	5					5
Confl. Bikes (#/hr)			2									1
Heavy Vehicles (%)	3%	3%	3%	5%	5%	5%	0%	0%	0%	2%	2%	2%
Bus Blockages (#/hr)	0	0	7	0	0	0	0	0	0	0	0	0
Parking (#/hr)					0					0	0	0
Turn Type		NA	Perm	Perm	NA					Split	NA	
Protected Phases		6			2					4	4	
Permitted Phases			6	2								
Actuated Green, G (s)		82.0	82.0		82.0						23.0	
Effective Green, g (s)		84.0	84.0		84.0						25.0	
Actuated g/C Ratio		0.70	0.70		0.70						0.21	
Clearance Time (s)		6.0	6.0		6.0						6.0	
Lane Grp Cap (vph)		1988	829		1820						264	
v/s Ratio Prot		c0.44									c0.12	
v/s Ratio Perm			0.01		0.26							
v/c Ratio		0.62	0.01		0.37						0.57	
Uniform Delay, d1		9.6	5.4		7.3						42.7	
Progression Factor		1.00	1.00		0.28						1.00	
Incremental Delay, d2		1.5	0.0		0.6						8.7	
Delay (s)		11.1	5.5		2.6						51.4	
Level of Service		В	Α		Α						D	
Approach Delay (s)		11.0			2.6			0.0			51.4	
Approach LOS		В			Α			Α			D	
Intersection Summary												
HCM 2000 Control Delay			11.2	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	y ratio		0.61									
Actuated Cycle Length (s)	,		120.0	S	um of lost	time (s)			10.0			
Intersection Capacity Utilizatio	n		55.4%			of Service			В			
Analysis Period (min)			15	-					_			

Background 2024 AM Peak

c Critical Lane Group

Background 2024 Synchro 10 Report Page 3 AM Peak

Movement EBT EBR WBL WBT NBL NBR Lane Configurations Image: Configuration of the co
Lane Configurations Image: Configuration of the confi
Traffic Volume (veh/h) 46 15 0 0 0 37 Future Volume (Veh/h) 46 15 0 0 0 37 Sign Control Free Free Yield 6 6 6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 0 41 0 0 0 0 0 41 0 0 0 0 0 0 41 0
Future Volume (Veh/h) 46 15 0 0 0 37 Sign Control Free Free Yield Grade 5% 0% 0% Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 Hourly flow rate (vph) 51 17 0 0 0 41 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)
Sign Control Free Free Yield Grade 5% 0% 0% Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 Hourly flow rate (vph) 51 17 0 0 0 41 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Right turn flare (veh)
Grade 5% 0% 0% Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 Hourly flow rate (vph) 51 17 0 0 0 41 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)
Peak Hour Factor 0.90 41 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Percent Bloc
Hourly flow rate (vph) 51 17 0 0 41 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)
Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)
Walking Speed (ft/s) Percent Blockage Right turn flare (veh)
Percent Blockage Right turn flare (veh)
Right turn flare (veh)
Median storage veh)
Upstream signal (ft)
pX, platoon unblocked
vC, conflicting volume 68 60 60
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 68 60 60
tC, single (s) 4.1 6.4 6.2
tC, 2 stage (s)
tF (s) 2.2 3.5 3.3
p0 queue free % 100 100 96
cM capacity (veh/h) 1533 947 1006
Direction, Lane # EB 1 NB 1
Volume Total 68 41
Volume Left 0 0
Volume Right 17 41
cSH 1700 1006
Volume to Capacity 0.04 0.04
Queue Length 95th (ft) 0 3
Control Delay (s) 0.0 8.7
Lane LOS A
Approach Delay (s) 0.0 8.7
Approach LOS A
Intersection Summary
Average Delay 3.3
Intersection Capacity Utilization 13.3% ICU Level of Service
Analysis Period (min) 15

Background 2024 Synchro 10 Report AM Peak Page 4

	ሻ	†	r4	Ļ	+	wJ	•	×	\	€	×	•
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4						^			∱ ∱	
Traffic Volume (veh/h)	6	2	75	0	0	0	0	1264	0	0	654	34
Future Volume (Veh/h)	6	2	75	0	0	0	0	1264	0	0	654	34
Sign Control		Stop			Stop			Free			Free	
Grade		5%			0%			0%			-7%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	6	2	77	0	0	0	0	1290	0	0	667	35
Pedestrians					16							
Lane Width (ft)					0.0							
Walking Speed (ft/s)					4.0							
Percent Blockage					0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								232			230	
pX, platoon unblocked	0.78	0.78	0.78	0.78	0.78					0.78		
vC, conflicting volume	1624	2008	645	1424	1990	367	718			1290		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1231	1725	0	974	1703	367	718			803		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.2			4.2		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	94	97	91	100	100	100	100			100		
cM capacity (veh/h)	103	68	844	143	71	630	872			631		
Direction, Lane #	NB 1	SE 1	SE 2	NW 1	NW 2							
Volume Total	85	645	645	445	257							
Volume Left	6	043	045	0	0							
Volume Right	77	0	0	0	35							
cSH	476	1700	1700	1700	1700							
	0.18	0.38	0.38	0.26	0.15							
Volume to Capacity	16											
Queue Length 95th (ft)	14.2	0	0	0	0.0							
Control Delay (s)		0.0	0.0	0.0	0.0							
Lane LOS	B	0.0		0.0								
Approach Delay (s)	14.2	0.0		0.0								
Approach LOS	В											
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utiliza	ation		51.1%	IC	CU Level of	of Service			Α			
Analysis Period (min)			15									

Background 2024 AM Peak

4: University Ave NW & Sedgwick St NW/WTS Dwy

	_					_		_	_	,		
	•	-	•	•	•	•	1	T		-	¥	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स			f)	
Traffic Volume (veh/h)	4	0	2	1	1	4	1	25	0	0	14	1
Future Volume (Veh/h)	4	0	2	1	1	4	1	25	0	0	14	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	4	0	2	1	1	4	1	28	0	0	16	1
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	51	46	16	48	47	28	17			28		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	51	46	16	48	47	28	17			28		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	943	845	1063	950	844	1047	1600			1585		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	6	6	29	17								
Volume Left	4	1	1	0								
Volume Right	2	4	0	1								
cSH	980	990	1600	1700								
Volume to Capacity	0.01	0.01	0.00	0.01								
Queue Length 95th (ft)	0	0	0	0								
Control Delay (s)	8.7	8.7	0.3	0.0								
Lane LOS	Α	Α	Α									
Approach Delay (s)	8.7	8.7	0.3	0.0								
Approach LOS	Α	Α										
Intersection Summary												
Average Delay			1.9									
Intersection Capacity Utiliza	ation		13.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

Background 2024 AM Peak

5: Massachusetts Ave NW & 45th St NW

10/22/2021

Lane Group Lane Group Flow (vph) v/c Ratio	SET 1488	NWT 770	SWL
Lane Group Flow (vph)	1488		
		110	30
., •	0.54	0.23	0.02
Control Delay	1.3	0.1	0.0
Queue Delay	0.0	0.0	0.0
Total Delay	1.3	0.1	0.0
Queue Length 50th (ft)	18	0	0
Queue Length 95th (ft)	4	0	0
Internal Link Dist (ft)	150	66	207
Turn Bay Length (ft)			
Base Capacity (vph)	2742	3405	1587
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.54	0.23	0.02
Intersection Summary			

	₩.	\mathbf{x}	×	*	Ĺ	*	
Movement	SEL	SET	NWT	NWR	SWL	SWR	
Lane Configurations		41	↑ ↑		W	5 7111	
Traffic Volume (vph)	63	1276	675	18	14	13	
Future Volume (vph)	63	1276	675	18	14	13	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Grade (%)		4%	-7%		0%		
Total Lost time (s)		9.0	9.0		9.0		
Lane Util. Factor		0.95	0.95		1.00		
Frt		1.00	1.00		0.94		
Flt Protected		1.00	1.00		0.97		
Satd. Flow (prot)		3230	3406		1587		
Flt Permitted		0.85	1.00		0.97		
Satd. Flow (perm)		2743	3406		1587		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	70	1418	750	20	16	14	
RTOR Reduction (vph)	0	0	0	0	0	0	
Lane Group Flow (vph)	0	1488	770	0	30	0	
Turn Type	Perm	NA	NA		D.Pm		
Protected Phases		2!	2!				
Permitted Phases	2!				2!		
Actuated Green, G (s)		120.0	120.0		120.0		
Effective Green, g (s)		120.0	120.0		120.0		
Actuated g/C Ratio		1.00	1.00		1.00		
Clearance Time (s)		11.0	11.0		11.0		
Vehicle Extension (s)		1.0	1.0		1.0		
Lane Grp Cap (vph)		2743	3406		1587		
v/s Ratio Prot			0.23				
v/s Ratio Perm		c0.54			0.02		
v/c Ratio		0.54	0.23		0.02		
Uniform Delay, d1		0.0	0.0		0.0		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		0.7	0.1		0.0		
Delay (s)		0.7	0.1		0.0		
Level of Service		Α	Α		Α		
Approach Delay (s)		0.7	0.1		0.0		
Approach LOS		Α	Α		Α		
Intersection Summary							
HCM 2000 Control Delay			0.5	Н	CM 2000	Level of Service)
HCM 2000 Volume to Capacit	y ratio		0.61				
Actuated Cycle Length (s)			120.0		um of lost		
Intersection Capacity Utilization	n		87.2%	IC	CU Level o	of Service	
Analysis Period (min)			15				
! Phase conflict between lan	e groups						

c Critical Lane Group

	ሻ	۴	×	\	€	*
Movement	NBL	NBR	SET	SER	NWL	NWT
Lane Configurations		7	∱ Љ			4
Traffic Volume (veh/h)	0	7	1283	7	18	693
Future Volume (Veh/h)	0	7	1283	7	18	693
Sign Control	Stop		Free			Free
Grade	0%		4%			-7%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	8	1426	8	20	770
Pedestrians	•					
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			140110			110110
Upstream signal (ft)			214			651
pX, platoon unblocked	0.76		217			001
vC, conflicting volume	2240	717			1434	
vC1, stage 1 conf vol	2240	717			1707	
vC2, stage 2 conf vol						
vCu, unblocked vol	2471	717			1434	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)	0.0	0.5			7.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	98			96	
•	18	372			470	
cM capacity (veh/h)	10	312			470	
Direction, Lane #	NB 1	SE 1	SE 2	NW 1		
Volume Total	8	951	483	790		
Volume Left	0	0	0	20		
Volume Right	8	0	8	0		
cSH	372	1700	1700	470		
Volume to Capacity	0.02	0.56	0.28	0.04		
Queue Length 95th (ft)	2	0	0	3		
Control Delay (s)	14.9	0.0	0.0	1.3		
Lane LOS	В			Α		
Approach Delay (s)	14.9	0.0		1.3		
Approach LOS	В					
Intersection Summary						
			0.5			
Average Delay	ation		54.3%	10	المراا	of Service
Intersection Capacity Utiliza	au011			IC	U Level (or service
Analysis Period (min)			15			

Background 2024 Synchro 10 Report Page 9 AM Peak

10/22/2021

	×	×	₹	×	~	×
Lane Group	SET	NWT	NWR	NET	NER	SWT
Lane Group Flow (vph)	1402	757	65	30	36	29
v/c Ratio	0.70	0.67	0.08	0.25	0.24	0.15
Control Delay	12.4	11.1	1.1	52.6	7.3	42.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.4	11.1	1.1	52.6	7.3	42.3
Queue Length 50th (ft)	295	253	0	21	0	17
Queue Length 95th (ft)	400	376	10	52	12	46
Internal Link Dist (ft)	571	391		281		141
Turn Bay Length (ft)						
Base Capacity (vph)	1995	1136	863	120	148	188
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.70	0.67	0.08	0.25	0.24	0.15
Intersection Summary						

	4	\mathbf{x}	À	F	×	₹	ን	×	~	Ĺ	K	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		413-			†	7		ર્ન	7		4	
Traffic Volume (vph)	22	1190	78	11	685	60	21	6	33	4	18	5
Future Volume (vph)	22	1190	78	11	685	60	21	6	33	4	18	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	10	10	10	10	10	10
Grade (%)		4%			-4%			-1%			5%	
Total Lost time (s)		4.0			4.0	4.0		4.0	4.0		4.0	
Lane Util. Factor		0.95			1.00	1.00		1.00	1.00		1.00	
Frpb, ped/bikes		1.00			1.00	0.86		1.00	0.67		0.98	
Flpb, ped/bikes		1.00			1.00	1.00		0.93	1.00		0.96	
Frt		0.99			1.00	0.85		1.00	0.85		0.98	
Flt Protected		1.00			1.00	1.00		0.96	1.00		0.99	
Satd. Flow (prot)		2846			1564	1130		1089	694		1417	
Flt Permitted		0.93			0.97	1.00		0.80	1.00		0.97	
Satd. Flow (perm)		2655			1516	1130		904	694		1383	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	24	1293	85	12	745	65	23	7	36	4	20	5
RTOR Reduction (vph)	0	4	0	0	0	16	0	0	31	0	4	0
Lane Group Flow (vph)	0	1398	0	0	757	49	0	30	5	0	25	0
Confl. Peds. (#/hr)	19		8	8		19	22		160	160		22
Confl. Bikes (#/hr)			1									
Heavy Vehicles (%)	3%	3%	3%	4%	4%	4%	32%	32%	32%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	2	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		6			2			8			4	
Permitted Phases	6			2		2	8		8	4		
Actuated Green, G (s)		88.0			88.0	88.0		14.0	14.0		14.0	
Effective Green, g (s)		90.0			90.0	90.0		16.0	16.0		16.0	
Actuated g/C Ratio		0.75			0.75	0.75		0.13	0.13		0.13	
Clearance Time (s)		6.0			6.0	6.0		6.0	6.0		6.0	
Lane Grp Cap (vph)		1991			1137	847		120	92		184	
v/s Ratio Prot												
v/s Ratio Perm		c0.53			0.50	0.04		c0.03	0.01		0.02	
v/c Ratio		0.70			0.67	0.06		0.25	0.05		0.13	
Uniform Delay, d1		7.9			7.5	3.9		46.6	45.4		45.9	
Progression Factor		1.30			1.00	1.00		1.00	1.00		1.00	
Incremental Delay, d2		1.8			3.1	0.1		4.9	1.1		1.5	
Delay (s)		12.1			10.6	4.0		51.5	46.5		47.4	
Level of Service		В			В	Α		D	D		D	
Approach Delay (s)		12.1			10.1			48.8			47.4	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			12.9	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.62									
Actuated Cycle Length (s)			120.0	Sı	um of los	t time (s)			12.0			
Intersection Capacity Utilizat	ion		75.2%	IC	U Level	of Service)		D			
Analysis Period (min)			15									
c Critical Lane Group												

Background 2024 AM Peak

1: Tilden St NW/46th St NW & Massachusetts Ave NW

10/22/2021

	×	Ì	×	×
Lane Group	SET	SER	NWT	SWT
Lane Group Flow (vph)	1008	6	1126	131
v/c Ratio	0.49	0.01	0.55	0.64
Control Delay	6.9	3.8	4.1	62.5
Queue Delay	0.0	0.0	0.1	0.0
Total Delay	6.9	3.8	4.2	62.5
Queue Length 50th (ft)	140	1	72	95
Queue Length 95th (ft)	177	4	84	#175
Internal Link Dist (ft)	290		149	39
Turn Bay Length (ft)		90		
Base Capacity (vph)	2064	824	2034	204
Starvation Cap Reductn	0	0	197	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.49	0.01	0.61	0.64
Internation Commons				

Intersection Summary

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

1: Tilden St NW/46th St NW & Massachusetts Ave NW

	₩.	\mathbf{x}	Ž	~	×	₹	7	×	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		^	7		41₽						4	
Traffic Volume (vph)	0	968	6	35	1046	0	0	0	0	91	32	3
Future Volume (vph)	0	968	6	35	1046	0	0	0	0	91	32	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	12	12	12	9	9	9
Grade (%)		7%			-7%			0%			7%	
Total Lost time (s)		4.0	4.0		4.0						4.0	
Lane Util. Factor		0.95	1.00		0.95						1.00	
Frpb, ped/bikes		1.00	0.96		1.00						1.00	
Flpb, ped/bikes		1.00	1.00		1.00						1.00	
Frt		1.00	0.85		1.00						1.00	
Flt Protected		1.00	1.00		1.00						0.97	
Satd. Flow (prot)		2752	1099		3071						1285	
Flt Permitted		1.00	1.00		0.88						0.97	
Satd. Flow (perm)		2752	1099		2712						1285	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0.50	1008	6	36	1090	0.30	0.50	0.50	0.50	95	33	3
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	1008	6	0	1126	0	0	0	0	0	130	0
Confl. Peds. (#/hr)	7	1000	28	28	1120	7	7	U	U	U	130	7
Confl. Bikes (#/hr)	ı		20	20		2	1					1
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	5	0	5	0	0 /8	0 /8	0 /8	0 /0	0 /0	0 /0
Parking (#/hr)	U	0	0	U	3	U	U	U	U	0	0	0
				Dorm	NΙΛ						NA	U
Turn Type Protected Phases		NA 6	Perm	Perm	NA 2					Split 4	NA 4	
Permitted Phases		U	e	2	2					4	4	
		00 A	6 88.0		88.0						17.0	
Actuated Green, G (s)		88.0 90.0	90.0		90.0						19.0	
Effective Green, g (s)		0.75	0.75		0.75						0.16	
Actuated g/C Ratio												
Clearance Time (s)		6.0	6.0		6.0						6.0	
Lane Grp Cap (vph)		2064	824		2034						203	
v/s Ratio Prot		0.37	0.04		0.40						c0.10	
v/s Ratio Perm		0.40	0.01		c0.42						0.04	
v/c Ratio		0.49	0.01		0.55						0.64	
Uniform Delay, d1		5.9	3.8		6.4						47.3	
Progression Factor		1.00	1.00		0.47						1.00	
Incremental Delay, d2		0.8	0.0		1.0						14.5	
Delay (s)		6.7	3.8		4.0						61.8	
Level of Service		Α	Α		Α						Е	
Approach Delay (s)		6.7			4.0			0.0			61.8	
Approach LOS		Α			Α			Α			Е	
Intersection Summary												
HCM 2000 Control Delay			8.6	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capaci	tv ratio		0.56									
Actuated Cycle Length (s)	,		120.0	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization	on		79.5%			of Service			D			
Analysis Period (min)			15									

Background 2024 PM Peak

Appendix I - Vehicular Capacity Analysis Worksheets - 2024 Background Conditions
HCM Signalized Intersection Capacity Analysis
The 1: Tilden St NW/46th St NW & Massachusetts Ave NW

The Standard at WTS 10/22/2021

c Critical Lane Group

Background 2024 Synchro 10 Report Page 3 PM Peak

	-	\rightarrow	•	←	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4					1
Traffic Volume (veh/h)	33	26	0	0	0	41
Future Volume (Veh/h)	33	26	0	0	0	41
Sign Control	Free			Free	Yield	
Grade	5%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	37	29	0	0	0	46
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)	110110			110110		
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			66		52	52
vC1, stage 1 conf vol					02	02
vC2, stage 2 conf vol						
vCu, unblocked vol			66		52	52
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					.	<u>-</u>
tF (s)			2.2		3.5	3.3
p0 queue free %			100		100	95
cM capacity (veh/h)			1536		957	1016
Direction, Lane #	EB 1	NB 1				
Volume Total	66	46				
Volume Left	0	0				
Volume Right	29	46				
cSH	1700	1016				
Volume to Capacity	0.04	0.05				
Queue Length 95th (ft)	0.04	4				
Control Delay (s)	0.0	8.7				
Lane LOS	0.0	Α				
Approach Delay (s)	0.0	8.7				
Approach LOS	0.0	Α				
		А				
Intersection Summary						
Average Delay			3.6			
Intersection Capacity Utiliza	ation		13.3%	IC	U Level o	of Service
Analysis Period (min)			15			

Background 2024 Synchro 10 Report PM Peak Page 4

	ሻ	†	Æ	Ļ	ļ	₩ J	•	\mathbf{x}	>	₹	×	*
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4						^			∱ }	
Traffic Volume (veh/h)	15	6	48	0	0	0	0	1059	0	0	1077	75
Future Volume (Veh/h)	15	6	48	0	0	0	0	1059	0	0	1077	75
Sign Control		Stop			Stop			Free			Free	
Grade		5%			0%			0%			-7%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	16	6	50	0	0	0	0	1103	0	0	1122	78
Pedestrians					7							
Lane Width (ft)					0.0							
Walking Speed (ft/s)					4.0							
Percent Blockage					0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								229			230	
pX, platoon unblocked	0.87	0.87	0.87	0.87	0.87					0.87		
vC, conflicting volume	1664	2310	552	1772	2271	607	1207			1103		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1461	2205	180	1586	2160	607	1207			815		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	79	84	93	100	100	100	100			100		
cM capacity (veh/h)	78	38	722	52	41	439	579			707		
Direction, Lane #	NB 1	SE 1	SE 2	NW 1	NW 2							
Volume Total	72	552	552	748	452							
Volume Left	16	0	0	0	0							
Volume Right	50	0	0	0	78							
cSH	166	1700	1700	1700	1700							
Volume to Capacity	0.43	0.32	0.32	0.44	0.27							
Queue Length 95th (ft)	49	0	0	0	0							
Control Delay (s)	42.2	0.0	0.0	0.0	0.0							
Lane LOS	Е											
Approach Delay (s)	42.2	0.0		0.0								
Approach LOS	Е											
Intersection Summary												
Average Delay			1.3									
Intersection Capacity Utiliza	ation		47.0%	10	CU Level	of Service			Α			
Analysis Period (min)			15									

Background 2024 Synchro 10 Report Page 5 PM Peak

4: University Ave NW & Sedgwick St NW/WTS Dwy

	۶	→	•	•	←	•	1	†	<i>></i>	/	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			ĵ.	
Traffic Volume (veh/h)	5	0	1	1	6	12	1	8	0	0	21	5
Future Volume (Veh/h)	5	0	1	1	6	12	1	8	0	0	21	5
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	6	0	1	1	7	13	1	9	0	0	23	6
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	54	37	26	38	40	9	29			9		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	54	37	26	38	40	9	29			9		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	100	100	100	99	99	100			100		
cM capacity (veh/h)	927	855	1050	966	852	1073	1584			1611		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	7	21	10	29								
Volume Left	6	1	1	0								
Volume Right	1	13	0	6								
cSH	943	982	1584	1700								
Volume to Capacity	0.01	0.02	0.00	0.02								
Queue Length 95th (ft)	1	2	0	0								
Control Delay (s)	8.8	8.7	0.7	0.0								
Lane LOS	Α	Α	Α									
Approach Delay (s)	8.8	8.7	0.7	0.0								
Approach LOS	Α	Α										
Intersection Summary												
Average Delay			3.8									
Intersection Capacity Utilization	on		13.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

Background 2024 PM Peak

5: Massachusetts Ave NW & 45th St NW

10/22/2021

	`*	×	Ĺ
Lane Group	SET	NWT	SWL
Lane Group Flow (vph)	1230	1311	73
v/c Ratio	0.45	0.39	0.04
Control Delay	0.7	0.3	0.0
Queue Delay	0.0	0.0	0.0
Total Delay	0.7	0.3	0.0
Queue Length 50th (ft)	6	0	0
Queue Length 95th (ft)	0	0	0
Internal Link Dist (ft)	150	66	258
Turn Bay Length (ft)			
Base Capacity (vph)	2726	3402	1637
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.45	0.39	0.04
Intersection Summary			

0%

9.0

1.00

0.98

0.96

1636

0.96

1636

0.90

63

0

73

2!

D.Pm

120.0

120.0

1.00

11.0

1.0

1636

0.90

10

0

0

Grade (%)

Frt

Total Lost time (s)

Lane Util. Factor

Satd. Flow (prot)

Satd. Flow (perm)

Adj. Flow (vph)

Turn Type

Peak-hour factor, PHF

RTOR Reduction (vph)

Lane Group Flow (vph)

Protected Phases

Permitted Phases

Actuated Green, G (s)

Effective Green, g (s)

Actuated g/C Ratio

Clearance Time (s)

Vehicle Extension (s)

Critical Lane Group

Lane Grp Cap (vph)

Flt Protected

Flt Permitted

5: Massachusetts	Ave NW	& 45th	n St N	Λ ΄		
	y	×	×	₹	Ĺ	*
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations		41₽	↑ ↑		¥	
Traffic Volume (vph)	35	1072	1143	37	57	9
Future Volume (vph)	35	1072	1143	37	57	9
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900

4%

9.0

0.95

1.00

1.00

3232

0.84

2725

0.90

1191

1230

120.0

120.0

1.00

11.0

1.0

2725

NA

2!

0

0.90

39

0

0

2!

Perm

-7%

9.0

0.95

1.00

1.00

3403

1.00

3403

0.90

1270

1311

120.0

120.0

1.00

11.0

1.0

3403

NA

2!

0

0.90

41

0

0

v/s Ratio Prot		0.39			
v/s Ratio Perm	c0.45		0.04		
v/c Ratio	0.45	0.39	0.04		
Uniform Delay, d1	0.0	0.0	0.0		
Progression Factor	1.00	1.00	1.00		
Incremental Delay, d2	0.5	0.3	0.1		
Delay (s)	0.5	0.3	0.1		
Level of Service	Α	Α	А		
Approach Delay (s)	0.5	0.3	0.1		
Approach LOS	Α	Α	Α		
Intersection Summary					
HCM 2000 Control Delay		0.4	HCM 2000 Level of Service	Α	
HCM 2000 Volume to Capacity ratio		0.51			
Actuated Cycle Length (s)		120.0	Sum of lost time (s)	13.0	
Intersection Capacity Utilization		78.3%	ICU Level of Service	D	
Analysis Period (min)		15			
! Phase conflict between lane groups					

Background 2024 Synchro 10 Report PM Peak Page 8

	ሻ	r4	×	>	•	×	
Movement	NBL	NBR	SET	SER	NWL	NWT	
Lane Configurations		7	f.			41	
Traffic Volume (veh/h)	0	18	1114	15	16	1181	
Future Volume (Veh/h)	0	18	1114	15	16	1181	
Sign Control	Stop		Free			Free	
Grade	0%		4%			-7%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	20	1238	17	18	1312	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)			219			646	
pX, platoon unblocked	0.11	0.02	,		0.02		
vC, conflicting volume	1938	1246			1255		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	0	0			0		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	U.U	0.0					
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	12			47		
cM capacity (veh/h)	55	23			34		
			N 11 A / 4	NUA / 0	•		
Direction, Lane #	NB 1	SE 1	NW 1	NW 2			
Volume Total	20	1255	455	875			
Volume Left	0	0	18	0			
Volume Right	20	17	0	0			
cSH	23	1700	34	1700			
Volume to Capacity	0.88	0.74	0.53	0.51			
Queue Length 95th (ft)	64	0	44	0			
Control Delay (s)	385.5	0.0	140.3	0.0			
Lane LOS	F		F				
Approach Delay (s)	385.5	0.0	48.0				
Approach LOS	F						
Intersection Summary							
Average Delay			27.5				
Intersection Capacity Utiliza	ation		69.5%	IC	U Level	of Service	
Analysis Period (min)			15				

Background 2024 Synchro 10 Report Page 9 PM Peak

Background 2024 11/10/2021

Summary of All Intervals

Run Number	1	2	3	28 4 1)\Analysis\S5yr	nchro\BG PM	Avg
Start Time	4:45	4:45	4:45	4:45	4:45	4:45	4:45
End Time	6:00	6:00	6:00	6:00	6:00	6:00	6:00
Total Time (min)	75	75	75	75	75	75	75
Time Recorded (min)	60	60	60	60	60	60	60
# of Intervals	2	2	2	2	2	2	2
# of Recorded Intervals	1	1	1	1	1	1	1
Vehs Entered	2548	2428	2541	2633	2443	2529	2520
Vehs Exited	2512	2394	2539	2557	2446	2509	2492
Starting Vehs	139	117	148	113	136	133	126
Ending Vehs	175	151	150	189	133	153	154
Travel Distance (mi)	1319	1285	1320	1353	1283	1317	1313
Travel Time (hr)	238.8	221.7	267.1	212.9	244.9	232.1	236.3
Total Delay (hr)	192.6	176.8	220.5	165.4	199.8	185.8	190.1
Total Stops	3605	3560	3536	3813	3406	3685	3599
Fuel Used (gal)	89.6	84.3	95.9	84.6	89.3	88.1	88.6

Interval #0 Information Seeding

Start Time	4:45
End Time	5:00
Total Time (min)	15
Malicina and additional addition Open Ale	C4

Volumes adjusted by Growth Factors.

No data recorded this interval.

Interval #1 Information Recording

Start Time	5:00
End Time	6:00
Total Time (min)	60
Volumes adjusted by Growth F	actors.

Run Number	1	2	3	28 4 1	Avg		
Vehs Entered	2548	2428	2541	2633	2443	2529	2520
Vehs Exited	2512	2394	2539	2557	2446	2509	2492
Starting Vehs	139	117	148	113	136	133	126
Ending Vehs	175	151	150	189	133	153	154
Travel Distance (mi)	1319	1285	1320	1353	1283	1317	1313
Travel Time (hr)	238.8	221.7	267.1	212.9	244.9	232.1	236.3
Total Delay (hr)	192.6	176.8	220.5	165.4	199.8	185.8	190.1
Total Stops	3605	3560	3536	3813	3406	3685	3599
Fuel Used (gal)	89.6	84.3	95.9	84.6	89.3	88.1	88.6

The Standard at WTS
GS
SimTraffic Report
Page 1

Background 2024 11/10/2021

6: WTS Dwy & Massachusetts Ave NW Performance by approach

Approach	NB	SE	NW	All
Denied Del/Veh (s)	0.1	0.0	0.0	0.0
Total Del/Veh (s)	29.9	1.1	5.1	3.6

The Standard at WTS
GS
SimTraffic Report
Page 2

Background 2024 11/10/2021

Intersection: 6: WTS Dwy & Massachusetts Ave NW

NB	SE	NW	NW
R	TR	LT	T
56	16	256	227
16	1	72	56
45	9	213	188
240	22	582	582
	R 56 16 45	R TR 56 16 16 1 45 9	R TR LT 56 16 256 16 1 72 45 9 213

The Standard at WTS
GS
SimTraffic Report
Page 3

10/22/2021

	*	×	×	~	×
Lane Group	SET	NWT	NET	NER	SWT
Lane Group Flow (vph)	1204	1234	74	88	73
v/c Ratio	0.69	0.63	0.41	0.45	0.33
Control Delay	10.6	10.8	52.0	17.0	30.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	10.6	10.8	52.0	17.0	30.7
Queue Length 50th (ft)	210	233	52	0	28
Queue Length 95th (ft)	242	295	102	52	74
Internal Link Dist (ft)	566	391	281		141
Turn Bay Length (ft)					
Base Capacity (vph)	1746	1973	179	194	224
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.69	0.63	0.41	0.45	0.33
Intersection Summary					

Background 2024 PM Peak

	₩	\mathbf{x}	À	F	×	₹	7	×	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		413			ħβ			4	7		4	
Traffic Volume (vph)	21	1015	96	15	1103	42	61	8	83	19	18	32
Future Volume (vph)	21	1015	96	15	1103	42	61	8	83	19	18	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	10	10	10	10	10	10
Grade (%)		4%			-4%			-1%			5%	
Total Lost time (s)		4.0			4.0			4.0	4.0		4.0	
Lane Util. Factor		0.95			0.95			1.00	1.00		1.00	
Frpb, ped/bikes		0.98			0.99			1.00	0.54		0.96	
Flpb, ped/bikes		1.00			1.00			0.94	1.00		0.89	
Frt		0.99			0.99			1.00	0.85		0.94	
Flt Protected		1.00			1.00			0.96	1.00		0.99	
Satd. Flow (prot)		2701			2996			1381	697		1221	
Flt Permitted		0.91			0.93			0.71	1.00		0.91	
Satd. Flow (perm)		2458			2782			1025	697		1132	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	22	1080	102	16	1173	45	65	9	88	20	19	34
RTOR Reduction (vph)	0	6	0	0	2	0	0	0	73	0	26	0
Lane Group Flow (vph)	0	1198	0	0	1232	0	0	74	15	0	47	0
Confl. Peds. (#/hr)	21	1130	41	41	1232	21	32	/4	428	428	47	32
Confl. Bikes (#/hr)	۷۱		3	41		1	32		420	420		32
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	5%	5%	5%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	5	5	0	0	0	0 %	0 %	0 /0
Parking (#/hr)	0	0	0	U	3	J	U	U	U	U	U	U
Turn Type	Perm	NA	U	Perm	NA		Perm	NA	Dorm	Perm	NA	
Protected Phases	Pellii	NA 6		Pelili	2		Pelili	NA 8	Perm	Pellii	1NA 4	
Permitted Phases	6	Ü		2	Z		8	0	8	4	4	
	U	83.0			83.0		0	19.0		4	19.0	
Actuated Green, G (s)		85.0			85.0			21.0	19.0 21.0		21.0	
Effective Green, g (s) Actuated g/C Ratio		0.71			0.71			0.18	0.18		0.18	
		6.0			6.0			6.0	6.0		6.0	
Clearance Time (s)												
Lane Grp Cap (vph)		1741			1970			179	121		198	
v/s Ratio Prot		.0.40			0.44			.0.07	0.00		0.04	
v/s Ratio Perm		c0.49			0.44			c0.07	0.02		0.04	
v/c Ratio		0.69			0.63			0.41	0.13		0.24	
Uniform Delay, d1		10.0			9.2			44.0	41.8		42.6	
Progression Factor		0.84			1.00			1.00	1.00		1.00	
Incremental Delay, d2		2.1			1.5			6.9	2.2		2.8	
Delay (s)		10.5			10.7			50.9	43.9		45.4	
Level of Service		В			В			D	D		D	
Approach Delay (s)		10.5			10.7			47.1			45.4	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacit	y ratio		0.62									
Actuated Cycle Length (s)			120.0		um of lost				12.0			
Intersection Capacity Utilization	n		72.4%	IC	U Level	of Service	!		С			
Analysis Period (min)			15									

Background 2024 PM Peak

c Critical Lane Group

Synchro 10 Report Background 2024 Page 12 PM Peak

J. Vehicular Capacity Analysis Worksheets -2024 Total Future Conditions with Existing Access (Alternative A)

10/25/2021

1: Tilden St NW/46th St NW & Massachusetts Ave NW

	×)	×	×
Lane Group	SET	SER	NWT	SWT
Lane Group Flow (vph)	1243	8	681	152
v/c Ratio	0.63	0.01	0.37	0.57
Control Delay	11.3	5.5	2.6	52.1
Queue Delay	0.0	0.0	0.2	0.0
Total Delay	11.3	5.5	2.9	52.1
Queue Length 50th (ft)	242	2	18	106
Queue Length 95th (ft)	305	6	24	179
Internal Link Dist (ft)	282		152	19
Turn Bay Length (ft)		90		
Base Capacity (vph)	1988	829	1820	265
Starvation Cap Reductn	0	0	443	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.63	0.01	0.49	0.57
Intersection Summary				

1: Tilden St NW/46th St NW & Massachusetts Ave NW

	₩	\mathbf{x}	À	~	×	₹	7	×	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		† †	7		41≯						4	
Traffic Volume (vph)	0	1181	8	13	634	0	0	0	0	85	57	3
Future Volume (vph)	0	1181	8	13	634	0	0	0	0	85	57	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	12	12	12	9	9	9
Grade (%)		7%			-7%			0%			7%	
Total Lost time (s)		4.0	4.0		4.0						4.0	
Lane Util. Factor		0.95	1.00		0.95						1.00	
Frpb, ped/bikes		1.00	0.96		1.00						1.00	
Flpb, ped/bikes		1.00	1.00		1.00						1.00	
Frt		1.00	0.85		1.00						1.00	
Flt Protected		1.00	1.00		1.00						0.97	
Satd. Flow (prot)		2841	1185		2837						1269	
Flt Permitted		1.00	1.00		0.92						0.97	
Satd. Flow (perm)		2841	1185		2601						1269	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	1243	8	14	667	0	0	0	0	89	60	3
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	1243	8	0	681	0	0	0	0	0	151	0
Confl. Peds. (#/hr)	19	12.10	28	28		19	5					5
Confl. Bikes (#/hr)	10		2			10						1
Heavy Vehicles (%)	3%	3%	3%	5%	5%	5%	0%	0%	0%	2%	2%	2%
Bus Blockages (#/hr)	0	0	7	0	0	0	0	0	0	0	0	0
Parking (#/hr)				•	0			•	•	0	0	0
Turn Type		NA	Perm	Perm	NA					Split	NA	
Protected Phases		6	1 01111	1 01111	2					4	4	
Permitted Phases			6	2	_					•	•	
Actuated Green, G (s)		82.0	82.0	_	82.0						23.0	
Effective Green, g (s)		84.0	84.0		84.0						25.0	
Actuated g/C Ratio		0.70	0.70		0.70						0.21	
Clearance Time (s)		6.0	6.0		6.0						6.0	
Lane Grp Cap (vph)		1988	829		1820						264	
v/s Ratio Prot		c0.44	023		1020						c0.12	
v/s Ratio Perm		00.11	0.01		0.26						00.12	
v/c Ratio		0.63	0.01		0.27						0.57	
Uniform Delay, d1		9.6	5.4		7.3						42.7	
Progression Factor		1.00	1.00		0.28						1.00	
Incremental Delay, d2		1.5	0.0		0.6						8.7	
Delay (s)		11.1	5.5		2.6						51.4	
Level of Service		В	A		A						D	
Approach Delay (s)		11.1	, ,		2.6			0.0			51.4	
Approach LOS		В			Α.			A			D	
					,,			, ,				
Intersection Summary												
HCM 2000 Control Delay			11.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacit	y ratio		0.61									
Actuated Cycle Length (s)			120.0		um of lost				10.0			
Intersection Capacity Utilization	n		55.4%	IC	U Level	of Service			В			
Analysis Period (min)			15									

Total Future Alternative A 2024 AM Peak

1: Tilden St NW/46th St NW & Massachusetts Ave NW

c Critical Lane Group

Total Future Alternative A 2024 AM Peak

2: University Ave NW & Wesley Cir NW

	-	\rightarrow	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4					7	
Traffic Volume (veh/h)	46	15	0	0	0	39	
Future Volume (Veh/h)	46	15	0	0	0	39	
Sign Control	Free			Free	Yield		
Grade	5%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	51	17	0	0	0	43	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)				2			
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume			68		60	60	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			68		60	60	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	96	
cM capacity (veh/h)			1533		947	1006	
Direction, Lane #	EB 1	NB 1					
Volume Total	68	43					
Volume Left	0	0					
Volume Right	17	43					
cSH	1700	1006					
Volume to Capacity	0.04	0.04					
Queue Length 95th (ft)	0.01	3					
Control Delay (s)	0.0	8.7					
Lane LOS	0.0	Α					
Approach Delay (s)	0.0	8.7					
Approach LOS	0.0	Α					
•		,,					
Intersection Summary			2.4				
Average Delay			3.4				
Intersection Capacity Utiliza	ation		13.3%	IC	U Level c	of Service	
Analysis Period (min)			15				

	ሻ	†	Æ	Ļ	ļ	W J	•	\mathbf{x}	\	₹	×	*
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4						^			∱ }	
Traffic Volume (veh/h)	8	2	75	0	0	0	0	1266	0	0	654	34
Future Volume (Veh/h)	8	2	75	0	0	0	0	1266	0	0	654	34
Sign Control		Stop			Stop			Free			Free	
Grade		5%			0%			0%			-7%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	8	2	77	0	0	0	0	1292	0	0	667	35
Pedestrians					16							
Lane Width (ft)					0.0							
Walking Speed (ft/s)					4.0							
Percent Blockage					0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								232			230	
pX, platoon unblocked	0.78	0.78	0.78	0.78	0.78					0.78		
vC, conflicting volume	1626	2010	646	1424	1992	367	718			1292		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1232	1727	0	974	1704	367	718			803		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.2			4.2		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	92	97	91	100	100	100	100			100		
cM capacity (veh/h)	103	68	843	142	70	630	872			630		
Direction, Lane #	NB 1	SE 1	SE 2	NW 1	NW 2							
Volume Total	87	646	646	445	257							
Volume Left	8	0	0	0	0							
Volume Right	77	0	0	0	35							
cSH	439	1700	1700	1700	1700							
Volume to Capacity	0.20	0.38	0.38	0.26	0.15							
Queue Length 95th (ft)	18	0	0	0	0							
Control Delay (s)	15.2	0.0	0.0	0.0	0.0							
Lane LOS	С											
Approach Delay (s)	15.2	0.0		0.0								
Approach LOS	С											
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utiliza	ation		51.3%	I	CU Level	of Service			Α			
Analysis Period (min)			15									

4: University Ave NW & Sedgwick St NW/WTS Dwy

	۶	→	•	•	←	•	4	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			ર્ન			f)	
Traffic Volume (veh/h)	4	0	2	1	1	6	1	25	0	0	14	1
Future Volume (Veh/h)	4	0	2	1	1	6	1	25	0	0	14	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	4	0	2	1	1	7	1	28	0	0	16	1
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	54	46	16	48	47	28	17			28		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	54	46	16	48	47	28	17			28		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)		0.0				V. <u> </u>						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	100	99	100			100		
cM capacity (veh/h)	937	845	1063	950	844	1047	1600			1585		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1	• • • • • • • • • • • • • • • • • • • •							
Volume Total			29									
	6	9		17								
Volume Left	4	1	1	0								
Volume Right	2	7	0	1700								
cSH	975	1009	1600	1700								
Volume to Capacity	0.01	0.01	0.00	0.01								
Queue Length 95th (ft)	0	1	0	0								
Control Delay (s)	8.7	8.6	0.3	0.0								
Lane LOS	A	Α	Α									
Approach Delay (s)	8.7	8.6	0.3	0.0								
Approach LOS	Α	Α										
Intersection Summary												
Average Delay			2.2									
Intersection Capacity Utilizat	tion		13.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

10/25/2021

5: Massachusetts Ave NW & 45th St NW

	`*	×	4
Lane Group	SET	NWT	SWL
Lane Group Flow (vph)	1490	770	30
v/c Ratio	0.54	0.23	0.02
Control Delay	1.3	0.23	0.02
Queue Delay	0.0	0.0	0.0
Total Delay	1.3	0.0	0.0
Queue Length 50th (ft)	1.3	0.1	0.0
Queue Length 95th (ft)	3	0	0
Internal Link Dist (ft)	150	66	207
Turn Bay Length (ft)	100	00	201
Base Capacity (vph)	2745	3405	1587
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.54	0.23	0.02
Intersection Summary			
intersection Summingly			

5: Massachusetts Ave NW & 45th St NW

	₩.	\mathbf{x}	×	₹	Ĺ	*			
Movement	SEL	SET	NWT	NWR	SWL	SWR			
Lane Configurations		414	† 1>		¥				
Traffic Volume (vph)	63	1278	675	18	14	13			
Future Volume (vph)	63	1278	675	18	14	13			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Grade (%)		4%	-7%		0%				
Total Lost time (s)		9.0	9.0		9.0				
Lane Util. Factor		0.95	0.95		1.00				
Frt		1.00	1.00		0.94				
Flt Protected		1.00	1.00		0.97				
Satd. Flow (prot)		3230	3406		1587				
Flt Permitted		0.85	1.00		0.97				
Satd. Flow (perm)		2744	3406		1587				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90			
Adj. Flow (vph)	70	1420	750	20	16	14			
RTOR Reduction (vph)	0	0	0	0	0	0			
Lane Group Flow (vph)	0	1490	770	0	30	0			
Turn Type	Perm	NA	NA		D.Pm				
Protected Phases		2!	2!						
Permitted Phases	2!				2!				
Actuated Green, G (s)		120.0	120.0		120.0				
Effective Green, g (s)		120.0	120.0		120.0				
Actuated g/C Ratio		1.00	1.00		1.00				
Clearance Time (s)		11.0	11.0		11.0				
Vehicle Extension (s)		1.0	1.0		1.0				
Lane Grp Cap (vph)		2744	3406		1587				
v/s Ratio Prot			0.23						
v/s Ratio Perm		c0.54			0.02				
v/c Ratio		0.54	0.23		0.02				
Uniform Delay, d1		0.0	0.0		0.0				
Progression Factor		1.00	1.00		1.00				
Incremental Delay, d2		0.7	0.1		0.0				
Delay (s)		0.7	0.1		0.0				
Level of Service		Α	Α		Α				
Approach Delay (s)		0.7	0.1		0.0				
Approach LOS		Α	Α		Α				
Intersection Summary									
HCM 2000 Control Delay			0.5	Н	CM 2000	Level of Service)	Α	
HCM 2000 Volume to Capaci	ty ratio		0.61						
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)		13.0	
Intersection Capacity Utilization	on		87.2%			of Service		Е	
Analysis Period (min)			15						
! Phase conflict between lar	ne groups								

Critical Lane Group

	ሻ	ρ¥	×	>	€	×	
Movement	NBL	NBR	SET	SER	NWL	NWT	
Lane Configurations		7	† }			ની	
Traffic Volume (veh/h)	0	13	1283	7	22	693	
Future Volume (Veh/h)	0	13	1283	7	22	693	
Sign Control	Stop		Free			Free	
Grade	0%		4%			-7%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	14	1426	8	24	770	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			110110			110110	
Upstream signal (ft)			214			651	
pX, platoon unblocked	0.76		Z17			001	
vC, conflicting volume	2248	717			1434		
vC1, stage 1 conf vol	2240	, , ,			1707		
vC2, stage 2 conf vol							
vCu, unblocked vol	2485	717			1434		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.9			4.1		
	3.5	3.3			2.2		
tF (s) p0 queue free %	100	96			95		
•	17				470		
cM capacity (veh/h)		372			470		
Direction, Lane #	NB 1	SE 1	SE 2	NW 1			
Volume Total	14	951	483	794			
Volume Left	0	0	0	24			
Volume Right	14	0	8	0			
cSH	372	1700	1700	470			
Volume to Capacity	0.04	0.56	0.28	0.05			
Queue Length 95th (ft)	3	0	0	4			
Control Delay (s)	15.1	0.0	0.0	1.6			
Lane LOS	С			Α			
Approach Delay (s)	15.1	0.0		1.6			
Approach LOS	С						
Intersection Summary							
Average Delay			0.7				
Intersection Capacity Utiliza	ation		57.6%	IC	الاوراد	of Service	
Analysis Period (min)	A.(O) 1		15	70	S LOVOI V	J. 001 VIOC	

10/25/2021

	*	×	₹	×	4	K
Lane Group	SET	NWT	NWR	NET	NER	SWT
Lane Group Flow (vph)	1409	761	65	30	36	29
v/c Ratio	0.71	0.67	0.08	0.25	0.24	0.15
Control Delay	12.5	11.2	1.1	52.6	7.3	42.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.5	11.2	1.1	52.6	7.3	42.3
Queue Length 50th (ft)	298	255	0	21	0	17
Queue Length 95th (ft)	401	380	10	52	12	46
Internal Link Dist (ft)	571	391		281		141
Turn Bay Length (ft)						
Base Capacity (vph)	1995	1136	863	120	148	188
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.67	0.08	0.25	0.24	0.15
Intersection Summary						

	₩	\mathbf{x}	À	F	×	₹	ን	×	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4î>			†	7		4	7		4	
Traffic Volume (vph)	22	1196	78	11	689	60	21	6	33	4	18	5
Future Volume (vph)	22	1196	78	11	689	60	21	6	33	4	18	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	10	10	10	10	10	10
Grade (%)		4%			-4%			-1%			5%	
Total Lost time (s)		4.0			4.0	4.0		4.0	4.0		4.0	
Lane Util. Factor		0.95			1.00	1.00		1.00	1.00		1.00	
Frpb, ped/bikes		1.00			1.00	0.86		1.00	0.67		0.98	
Flpb, ped/bikes		1.00			1.00	1.00		0.93	1.00		0.96	
Frt		0.99			1.00	0.85		1.00	0.85		0.98	
Flt Protected		1.00			1.00	1.00		0.96	1.00		0.99	
Satd. Flow (prot)		2846			1564	1130		1089	694		1417	
Flt Permitted		0.93			0.97	1.00		0.80	1.00		0.97	
Satd. Flow (perm)		2655			1516	1130		904	694		1383	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	24	1300	85	12	749	65	23	7	36	4	20	5
RTOR Reduction (vph)	0	4	0	0	0	16	0	0	31	0	4	0
Lane Group Flow (vph)	0	1405	0	0	761	49	0	30	5	0	25	0
Confl. Peds. (#/hr)	19		8	8		19	22		160	160		22
Confl. Bikes (#/hr)			1	_					, , ,			
Heavy Vehicles (%)	3%	3%	3%	4%	4%	4%	32%	32%	32%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	2	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	-	6			2	-	-	8	-	-	4	
Permitted Phases	6			2		2	8		8	4		
Actuated Green, G (s)		88.0			88.0	88.0		14.0	14.0		14.0	
Effective Green, g (s)		90.0			90.0	90.0		16.0	16.0		16.0	
Actuated g/C Ratio		0.75			0.75	0.75		0.13	0.13		0.13	
Clearance Time (s)		6.0			6.0	6.0		6.0	6.0		6.0	
Lane Grp Cap (vph)		1991			1137	847		120	92		184	
v/s Ratio Prot												
v/s Ratio Perm		c0.53			0.50	0.04		c0.03	0.01		0.02	
v/c Ratio		0.71			0.67	0.06		0.25	0.05		0.13	
Uniform Delay, d1		8.0			7.5	3.9		46.6	45.4		45.9	
Progression Factor		1.30			1.00	1.00		1.00	1.00		1.00	
Incremental Delay, d2		1.8			3.1	0.1		4.9	1.1		1.5	
Delay (s)		12.2			10.7	4.0		51.5	46.5		47.4	
Level of Service		В			В	Α		D	D		D	
Approach Delay (s)		12.2			10.1			48.8			47.4	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			12.9	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	v ratio		0.62									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilizatio	n		75.4%			of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Total Future Alternative A 2024 AM Peak

10/25/2021

1: Tilden St NW/46th St NW & Massachusetts Ave NW

	*	À	×	×
Lane Group	SET	SER	NWT	SWT
Lane Group Flow (vph)	1013	6	1130	131
v/c Ratio	0.49	0.01	0.56	0.64
Control Delay	6.9	3.8	4.1	62.5
Queue Delay	0.0	0.0	0.1	0.0
Total Delay	6.9	3.8	4.2	62.5
Queue Length 50th (ft)	141	1	72	95
Queue Length 95th (ft)	178	4	84	#175
Internal Link Dist (ft)	290		149	39
Turn Bay Length (ft)		90		
Base Capacity (vph)	2064	824	2032	204
Starvation Cap Reductn	0	0	195	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.49	0.01	0.62	0.64
Intersection Summary				

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

1: Tilden St NW/46th St NW & Massachusetts Ave NW

4	×	À	*	×	₹	7	×	~	Ĺ	×	*
Movement SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	† †	7		41∱						4	
Traffic Volume (vph)		6	35	1050	0	0	0	0	91	32	3
Future Volume (vph)		6	35	1050	0	0	0	0	91	32	3
Ideal Flow (vphpl) 1900		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width 10		10	10	10	10	12	12	12	9	9	9
Grade (%)	7%			-7%			0%			7%	
Total Lost time (s)	4.0	4.0		4.0						4.0	
Lane Util. Factor	0.95	1.00		0.95						1.00	
Frpb, ped/bikes	1.00	0.96		1.00						1.00	
Flpb, ped/bikes	1.00	1.00		1.00						1.00	
Frt	1.00	0.85		1.00						1.00	
Flt Protected	1.00	1.00		1.00						0.97	
Satd. Flow (prot)	2752	1099		3071						1285	
Flt Permitted	1.00	1.00		0.88						0.97	
Satd. Flow (perm)	2752	1099		2711						1285	
Peak-hour factor, PHF 0.96		0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)		6	36	1094	0.30	0.30	0.30	0.30	95	33	3
RTOR Reduction (vph)		0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)		6	0	1130	0	0	0	0	0	130	0
Confl. Peds. (#/hr)		28	28	1130	7	7	U	U	U	130	7
Confl. Bikes (#/hr)		20	20		2	ı					1
,	1%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
		5	0	5				0%			
5 ()	0	0	U	ວ	0	0	0	U	0	0	0
Parking (#/hr)			Daws	NΙΛ							U
Turn Type	NA	Perm	Perm	NA					Split	NA	
Protected Phases	6			2					4	4	
Permitted Phases	00.0	6	2	00.0						47.0	
Actuated Green, G (s)	88.0	88.0		88.0						17.0	
Effective Green, g (s)	90.0	90.0		90.0						19.0	
Actuated g/C Ratio	0.75	0.75		0.75						0.16	
Clearance Time (s)	6.0	6.0		6.0						6.0	
Lane Grp Cap (vph)	2064	824		2033						203	
v/s Ratio Prot	0.37			0.10						c0.10	
v/s Ratio Perm		0.01		c0.42							
v/c Ratio	0.49	0.01		0.56						0.64	
Uniform Delay, d1	5.9	3.8		6.4						47.3	
Progression Factor	1.00	1.00		0.46						1.00	
Incremental Delay, d2	0.8	0.0		1.0						14.5	
Delay (s)	6.8	3.8		4.0						61.8	
Level of Service	Α	Α		Α						Е	
Approach Delay (s)	6.8			4.0			0.0			61.8	
Approach LOS	А			Α			Α			Е	
Intersection Summary											
HCM 2000 Control Delay		8.6	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity ratio		0.57									
Actuated Cycle Length (s)		120.0	S	um of lost	t time (s)			10.0			
Intersection Capacity Utilization		79.6%			of Service	!		D			
Analysis Period (min)		15									

Total Future Alternative A 2024 PM Peak

1: Tilden St NW/46th St NW & Massachusetts Ave NW

c Critical Lane Group

Total Future Alternative A 2024 PM Peak

2: University Ave NW & Wesley Cir NW

	-	•	•	←	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1					7
Traffic Volume (veh/h)	33	26	0	0	0	46
Future Volume (Veh/h)	33	26	0	0	0	46
Sign Control	Free			Free	Yield	
Grade	5%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	37	29	0	0	0	51
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			66		52	52
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			66		52	52
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			100		100	95
cM capacity (veh/h)			1536		957	1016
	FD 4	ND 1				
Direction, Lane #	EB 1	NB 1				
Volume Total	66	51				
Volume Left	0	0				
Volume Right	29	51				
Volume to Consoity	1700	1016				
Volume to Capacity	0.04	0.05				
Queue Length 95th (ft)	0	4				
Control Delay (s)	0.0	8.7				
Lane LOS	0.0	Α				
Approach Delay (s)	0.0	8.7				
Approach LOS		Α				
Intersection Summary						
Average Delay			3.8			
Intersection Capacity Utiliz	ation		13.3%	IC	U Level o	of Service
Analysis Period (min)			15			

	ሻ	†	r*	Ļ	↓	» J	•	×	>	€	×	*
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4						^			∱ }	
Traffic Volume (veh/h)	19	6	49	0	0	0	0	1063	0	0	1077	75
Future Volume (Veh/h)	19	6	49	0	0	0	0	1063	0	0	1077	75
Sign Control		Stop			Stop			Free			Free	
Grade		5%			0%			0%			-7%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	20	6	51	0	0	0	0	1107	0	0	1122	78
Pedestrians					7							
Lane Width (ft)					0.0							
Walking Speed (ft/s)					4.0							
Percent Blockage					0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								229			230	
pX, platoon unblocked	0.87	0.87	0.87	0.87	0.87					0.87		
vC, conflicting volume	1668	2314	554	1776	2275	607	1207			1107		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1464	2209	178	1588	2164	607	1207			817		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	74	84	93	100	100	100	100			100		
cM capacity (veh/h)	77	38	723	51	40	439	579			705		
Direction, Lane #	NB 1	SE 1	SE 2	NW 1	NW 2							
Volume Total	77	554	554	748	452							
Volume Left	20	0	0	0	0							
Volume Right	51	0	0	0	78							
cSH	158	1700	1700	1700	1700							
Volume to Capacity	0.49	0.33	0.33	0.44	0.27							
Queue Length 95th (ft)	58	0	0	0	0							
Control Delay (s)	47.9	0.0	0.0	0.0	0.0							
Lane LOS	E											
Approach Delay (s)	47.9	0.0		0.0								
Approach LOS	Е											
Intersection Summary												
Average Delay			1.5									
			47.00/									

Total Future Alternative A 2024 PM Peak

Intersection Capacity Utilization

Analysis Period (min)

Synchro 10 Report Page 5

Α

ICU Level of Service

47.3%

15

4: University Ave NW & Sedgwick St NW/WTS Dwy

	•	→	•	1	+	•	•	<u>†</u>	<i>></i>	\	 	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स			f)	
Traffic Volume (veh/h)	5	0	1	1	6	17	1	8	0	0	21	5
Future Volume (Veh/h)	5	0	1	1	6	17	1	8	0	0	21	5
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	6	0	1	1	7	19	1	9	0	0	23	6
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)								110110			110110	
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	60	37	26	38	40	9	29			9		
vC1, stage 1 conf vol	00	01	20	00		<u> </u>	20					
vC2, stage 2 conf vol												
vCu, unblocked vol	60	37	26	38	40	9	29			9		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	7.1	0.0	0.2	7.1	0.0	0.2	7.1			7.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	100	100	100	99	98	100			100		
cM capacity (veh/h)	914	855	1050	966	852	1073	1584			1611		
					032	1073	1304			1011		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	7	27	10	29								
Volume Left	6	1	1	0								
Volume Right	1	19	0	6								
cSH	931	1001	1584	1700								
Volume to Capacity	0.01	0.03	0.00	0.02								
Queue Length 95th (ft)	1	2	0	0								
Control Delay (s)	8.9	8.7	0.7	0.0								
Lane LOS	Α	Α	Α									
Approach Delay (s)	8.9	8.7	0.7	0.0								
Approach LOS	А	Α										
Intersection Summary												
Average Delay			4.2									
Intersection Capacity Utiliza	ation		13.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
,												

10/25/2021

5: Massachusetts Ave NW & 45th St NW

	X	×	(
Lane Group	SET	NWT	SWL
	2-1		
Lane Group Flow (vph)	1236	1311	74
v/c Ratio	0.46	0.39	0.05
Control Delay	0.7	0.3	0.0
Queue Delay	0.0	0.0	0.0
Total Delay	0.7	0.3	0.0
Queue Length 50th (ft)	7	0	0
Queue Length 95th (ft)	0	0	0
Internal Link Dist (ft)	150	66	258
Turn Bay Length (ft)			
Base Capacity (vph)	2713	3402	1637
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.46	0.39	0.05
Intersection Summary			

5: Massachusetts Ave NW & 45th St NW

	₩.	\mathbf{x}	*	₹	Ĺ	*			
Movement	SEL	SET	NWT	NWR	SWL	SWR			
Lane Configurations		414	↑ ↑		¥				
Traffic Volume (vph)	36	1076	1143	37	58	9			
Future Volume (vph)	36	1076	1143	37	58	9			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Grade (%)		4%	-7%		0%				
Total Lost time (s)		9.0	9.0		9.0				
Lane Util. Factor		0.95	0.95		1.00				
Frt		1.00	1.00		0.98				
Flt Protected		1.00	1.00		0.96				
Satd. Flow (prot)		3232	3403		1636				
Flt Permitted		0.84	1.00		0.96				
Satd. Flow (perm)		2714	3403		1636				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90			
Adj. Flow (vph)	40	1196	1270	41	64	10			
RTOR Reduction (vph)	0	0	0	0	0	0			
Lane Group Flow (vph)	0	1236	1311	0	74	0			
Turn Type	Perm	NA	NA		D.Pm				
Protected Phases		2!	2!						
Permitted Phases	2!				2!				
Actuated Green, G (s)		120.0	120.0		120.0				
Effective Green, g (s)		120.0	120.0		120.0				
Actuated g/C Ratio		1.00	1.00		1.00				
Clearance Time (s)		11.0	11.0		11.0				
Vehicle Extension (s)		1.0	1.0		1.0				
Lane Grp Cap (vph)		2714	3403		1636				
v/s Ratio Prot			0.39						
v/s Ratio Perm		c0.46			0.05				
v/c Ratio		0.46	0.39		0.05				
Uniform Delay, d1		0.0	0.0		0.0				
Progression Factor		1.00	1.00		1.00				
Incremental Delay, d2		0.5	0.3		0.1				
Delay (s)		0.5	0.3		0.1				
Level of Service		Α	Α		Α				
Approach Delay (s)		0.5	0.3		0.1				
Approach LOS		Α	Α		Α				
Intersection Summary									
HCM 2000 Control Delay			0.4	Н	CM 2000	Level of Service)	Α	
HCM 2000 Volume to Capaci	ty ratio		0.51						
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)		13.0	
Intersection Capacity Utilization	on		79.2%			of Service		D	
Analysis Period (min)			15						
! Phase conflict between lar	ne groups								

Critical Lane Group

	ሻ	ſ٩	×	>	•	×
Movement	NBL	NBR	SET	SER	NWL	NWT
Lane Configurations		7	f)			414
Traffic Volume (veh/h)	0	30	1114	20	27	1181
Future Volume (Veh/h)	0	30	1114	20	27	1181
Sign Control	Stop		Free			Free
Grade	0%		4%			-7%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	33	1238	22	30	1312
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)			219			646
pX, platoon unblocked	0.12	0.02			0.02	
vC, conflicting volume	1965	1249			1260	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	0	0			0	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	0			11	
cM capacity (veh/h)	13	22			34	
			NIVA/ 4	NII A CO	0.	
Direction, Lane #	NB 1	SE 1	NW 1	NW 2		
Volume Total	33	1260	467	875		
Volume Left	0	0	30	0		
Volume Right	33	22	0	0		
cSH	22	1700	34	1700		
Volume to Capacity	1.47	0.74	0.89	0.51		
Queue Length 95th (ft)	106	0	78	0		
Control Delay (s)	611.8	0.0	296.4	0.0		
Lane LOS	F		F			
Approach Delay (s)	611.8	0.0	103.2			
Approach LOS	F					
Intersection Summary						
Average Delay			60.2			
Intersection Capacity Utiliz	zation		69.8%	IC	U Level	of Service
Analysis Period (min)			15	.0	5 25701	
ranarysis i crioù (illiil)			10			

Total Future Alternative A 2024 11/10/2021

Summary of All Intervals

Run Number	1	2	3	2811)\A t ha	alysis\Synchfo	TF Alt A PM	Avg
Start Time	4:45	4:45	4:45	4:45	4:45	4:45	4:45
End Time	6:00	6:00	6:00	6:00	6:00	6:00	6:00
Total Time (min)	75	75	75	75	75	75	75
Time Recorded (min)	60	60	60	60	60	60	60
# of Intervals	2	2	2	2	2	2	2
# of Recorded Intervals	1	1	1	1	1	1	1
Vehs Entered	2536	2495	2517	2538	2536	2636	2541
Vehs Exited	2510	2468	2490	2515	2493	2639	2519
Starting Vehs	132	141	119	100	116	148	123
Ending Vehs	158	168	146	123	159	145	145
Travel Distance (mi)	1309	1289	1299	1318	1312	1364	1315
Travel Time (hr)	274.6	299.6	262.8	220.9	198.5	224.5	246.8
Total Delay (hr)	228.6	254.4	217.1	174.5	152.5	176.3	200.5
Total Stops	3749	3666	3598	3817	3663	3952	3737
Fuel Used (gal)	97.7	103.0	94.3	85.3	79.9	87.7	91.3

Interval #0 Information Seeding

Start Time	4:45
End Time	5:00
Total Time (min)	15
VIII P. (C. III. O., (L.)	F

Volumes adjusted by Growth Factors.

No data recorded this interval.

Interval #1 Information Recording

Start Time	5:00
End Time	6:00
Total Time (min)	60

Volumes adjusted by Growth Factors.

Run Number	1	2	3	2811)\Ath	alysis\Synchfo	TF Alt A PM	Avg
Vehs Entered	2536	2495	2517	2538	2536	2636	2541
Vehs Exited	2510	2468	2490	2515	2493	2639	2519
Starting Vehs	132	141	119	100	116	148	123
Ending Vehs	158	168	146	123	159	145	145
Travel Distance (mi)	1309	1289	1299	1318	1312	1364	1315
Travel Time (hr)	274.6	299.6	262.8	220.9	198.5	224.5	246.8
Total Delay (hr)	228.6	254.4	217.1	174.5	152.5	176.3	200.5
Total Stops	3749	3666	3598	3817	3663	3952	3737
Fuel Used (gal)	97.7	103.0	94.3	85.3	79.9	87.7	91.3

The Standard at WTS
GS
SimTraffic Report
Page 1

Total Future Alternative A 2024 11/10/2021

6: WTS Dwy & Massachusetts Ave NW Performance by approach

Approach		E	NW	All
Denied Del/Veh (s)		.0	0.0	0.0
Total Del/Veh (s)	32.5 1	.2	6.3	4.4

SimTraffic Report The Standard at WTS GS Page 2 Total Future Alternative A 2024 11/10/2021

Intersection: 6: WTS Dwy & Massachusetts Ave NW

Movement	NB	SE	NW	NW
Directions Served	R	TR	LT	T
Maximum Queue (ft)	72	12	275	258
Average Queue (ft)	23	0	90	67
95th Queue (ft)	55	6	241	214
Link Distance (ft)	240	22	582	582
Upstream Blk Time (%)		0		
Queuing Penalty (veh)		0		
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

SimTraffic Report The Standard at WTS Page 3 GS

10/25/2021

7: Glover Gate/Katzen Arts Center Dwy & Massachusetts Ave NW

	×	×	×	~	×
Lane Group	SET	NWT	NET	NER	SWT
Lane Group Flow (vph)	1217	1246	74	88	73
v/c Ratio	0.70	0.63	0.41	0.45	0.33
Control Delay	10.8	10.9	52.0	17.0	30.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	10.8	10.9	52.0	17.0	30.7
Queue Length 50th (ft)	213	237	52	0	28
Queue Length 95th (ft)	245	300	102	52	74
Internal Link Dist (ft)	566	391	281		141
Turn Bay Length (ft)					
Base Capacity (vph)	1745	1974	179	194	224
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.70	0.63	0.41	0.45	0.33
Intersection Summary					

	₩.	\mathbf{x}	À	~	×	₹	ን	×	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		€ 1}			↑ ↑			ર્ન	7		4	
Traffic Volume (vph)	21	1027	96	15	1114	42	61	8	83	19	18	32
Future Volume (vph)	21	1027	96	15	1114	42	61	8	83	19	18	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	10	10	10	10	10	10
Grade (%)		4%			-4%			-1%			5%	
Total Lost time (s)		4.0			4.0			4.0	4.0		4.0	
Lane Util. Factor		0.95			0.95			1.00	1.00		1.00	
Frpb, ped/bikes		0.98			0.99			1.00	0.54		0.96	
Flpb, ped/bikes		1.00			1.00			0.94	1.00		0.89	
Frt		0.99			0.99			1.00	0.85		0.94	
Flt Protected		1.00			1.00			0.96	1.00		0.99	
Satd. Flow (prot)		2702			2996			1381	697		1221	
Flt Permitted		0.91			0.93			0.71	1.00		0.91	
Satd. Flow (perm)		2459			2782			1025	697		1132	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	22	1093	102	16	1185	45	65	9	88	20	19	34
RTOR Reduction (vph)	0	6	0	0	2	0	0	0	73	0	26	0
Lane Group Flow (vph)	0	1211	0	0	1244	0	0	74	15	0	47	0
Confl. Peds. (#/hr)	21		41	41		21	32		428	428		32
Confl. Bikes (#/hr)			3	• •		1	<u> </u>		0	0		V _
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	5%	5%	5%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	5	5	0	0	0	0	0	0
Parking (#/hr)	0	0	0		-			-	-			
Turn Type	Perm	NA	-	Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	. 0	6		1 01111	2		. 0	8		. 0	4	
Permitted Phases	6			2	-		8		8	4	•	
Actuated Green, G (s)		83.0		_	83.0			19.0	19.0	•	19.0	
Effective Green, g (s)		85.0			85.0			21.0	21.0		21.0	
Actuated g/C Ratio		0.71			0.71			0.18	0.18		0.18	
Clearance Time (s)		6.0			6.0			6.0	6.0		6.0	
Lane Grp Cap (vph)		1741			1970			179	121		198	
v/s Ratio Prot					1070			170	121		100	
v/s Ratio Perm		c0.49			0.45			c0.07	0.02		0.04	
v/c Ratio		0.70			0.63			0.41	0.13		0.24	
Uniform Delay, d1		10.1			9.2			44.0	41.8		42.6	
Progression Factor		0.84			1.00			1.00	1.00		1.00	
Incremental Delay, d2		2.1			1.6			6.9	2.2		2.8	
Delay (s)		10.6			10.8			50.9	43.9		45.4	
Level of Service		В			В			D	D		D	
Approach Delay (s)		10.6			10.8			47.1			45.4	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.63		500		2.1.00					
Actuated Cycle Length (s)	ony radio		120.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilizat	tion		72.8%			of Service	1		C			
Analysis Period (min)			15	, ,	5 -0101	2. 20. 1100			J			

Total Future Alternative A 2024 PM Peak

Synchro 10 Report Page 11

c Critical Lane Group

Total Future Alternative A 2024 PM Peak

K. Vehicular Capacity Analysis Worksheets – 2024 Total Future Conditions with Proposed Access (Alternative B)

10/25/2021

1: Tilden St NW/46th St NW & Massachusetts Ave NW

	\mathbf{x}	1	×	×
Lane Group	SET	SER	NWT	SWT
Lane Group Flow (vph)	1243	8	683	152
v/c Ratio	0.63	0.01	0.38	0.57
Control Delay	11.3	5.5	2.6	52.1
Queue Delay	0.0	0.0	0.2	0.0
Total Delay	11.3	5.5	2.8	52.1
Queue Length 50th (ft)	242	2	17	106
Queue Length 95th (ft)	305	6	22	179
Internal Link Dist (ft)	282		152	19
Turn Bay Length (ft)		90		
Base Capacity (vph)	1988	829	1820	265
Starvation Cap Reductn	0	0	439	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.63	0.01	0.49	0.57
Intersection Summary				

1: Tilden St NW/46th St NW & Massachusetts Ave NW

	₩	\mathbf{x}	Ž	~	×	₹	ን	×	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		† †	7		41∱						4	
Traffic Volume (vph)	0	1181	8	13	636	0	0	0	0	85	57	3
Future Volume (vph)	0	1181	8	13	636	0	0	0	0	85	57	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	12	12	12	9	9	9
Grade (%)		7%			-7%			0%			7%	
Total Lost time (s)		4.0	4.0		4.0						4.0	
Lane Util. Factor		0.95	1.00		0.95						1.00	
Frpb, ped/bikes		1.00	0.96		1.00						1.00	
Flpb, ped/bikes		1.00	1.00		1.00						1.00	
Frt		1.00	0.85		1.00						1.00	
Flt Protected		1.00	1.00		1.00						0.97	
Satd. Flow (prot)		2841	1185		2837						1269	
Flt Permitted		1.00	1.00		0.92						0.97	
Satd. Flow (perm)		2841	1185		2601						1269	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	1243	8	14	669	0	0	0	0	89	60	3
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	1243	8	0	683	0	0	0	0	0	151	0
Confl. Peds. (#/hr)	19		28	28		19	5		-	-		5
Confl. Bikes (#/hr)			2									1
Heavy Vehicles (%)	3%	3%	3%	5%	5%	5%	0%	0%	0%	2%	2%	2%
Bus Blockages (#/hr)	0	0	7	0	0	0	0	0	0	0	0	0
Parking (#/hr)	-			-	0	-	-			0	0	0
Turn Type		NA	Perm	Perm	NA					Split	NA	
Protected Phases		6			2					4	4	
Permitted Phases		-	6	2	_					•	•	
Actuated Green, G (s)		82.0	82.0		82.0						23.0	
Effective Green, g (s)		84.0	84.0		84.0						25.0	
Actuated g/C Ratio		0.70	0.70		0.70						0.21	
Clearance Time (s)		6.0	6.0		6.0						6.0	
Lane Grp Cap (vph)		1988	829		1820						264	
v/s Ratio Prot		c0.44	020		.020						c0.12	
v/s Ratio Perm			0.01		0.26							
v/c Ratio		0.63	0.01		0.38						0.57	
Uniform Delay, d1		9.6	5.4		7.3						42.7	
Progression Factor		1.00	1.00		0.27						1.00	
Incremental Delay, d2		1.5	0.0		0.6						8.7	
Delay (s)		11.1	5.5		2.5						51.4	
Level of Service		В	Α		A						D	
Approach Delay (s)		11.1			2.5			0.0			51.4	
Approach LOS		В			Α			Α			D	
Intersection Summary												
HCM 2000 Control Delay			11.2	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacit	y ratio		0.61									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			10.0			
Intersection Capacity Utilization	n		55.4%	IC	CU Level	of Service			В			
Analysis Period (min)			15									

Total Future Alternative B 2024 AM Peak

Synchro 10 Report Page 2 1: Tilden St NW/46th St NW & Massachusetts Ave NW

c Critical Lane Group

Total Future Alternative B 2024 AM Peak

2: University Ave NW & Wesley Cir NW

	→	•	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	<u></u>					7	
Traffic Volume (veh/h)	46	15	0	0	0	33	
Future Volume (Veh/h)	46	15	0	0	0	33	
Sign Control	Free	. •		Free	Yield		
Grade	5%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	51	17	0.00	0.00	0.00	37	
Pedestrians	<u> </u>	.,				01	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)	140110			140110			
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume			68		60	60	
vC1, stage 1 conf vol			00		00	00	
vC2, stage 2 conf vol							
vCu, unblocked vol			68		60	60	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)			7.1		0.4	0.2	
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	96	
cM capacity (veh/h)			1533		947	1006	
			1000		341	1000	
Direction, Lane #	EB 1	NB 1					
Volume Total	68	37					
Volume Left	0	0					
Volume Right	17	37					
cSH	1700	1006					
Volume to Capacity	0.04	0.04					
Queue Length 95th (ft)	0	3					
Control Delay (s)	0.0	8.7					
Lane LOS		Α					
Approach Delay (s)	0.0	8.7					
Approach LOS		Α					
Intersection Summary							
Average Delay			3.1				
Intersection Capacity Utiliza	ntion		13.3%	IC	ULevel	of Service	
Analysis Period (min)			15.070	10	5 257010	00.1100	

3: Wesley	Cir NW	& Massachuse	etts	Ave	NW	_

	ሻ	†	ſ*	Ļ	ţ	> J	•	×	>	•	*	*
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4						^			∱ ⊅	
Traffic Volume (veh/h)	2	2	75	0	0	0	0	1266	0	0	662	34
Future Volume (Veh/h)	2	2	75	0	0	0	0	1266	0	0	662	34
Sign Control		Stop			Stop			Free			Free	
Grade		5%			0%			0%			-7%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	2	2	77	0	0	0	0	1292	0	0	676	35
Pedestrians					16							
Lane Width (ft)					0.0							
Walking Speed (ft/s)					4.0							
Percent Blockage					0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								232			230	
pX, platoon unblocked	0.78	0.78	0.78	0.78	0.78					0.78		
vC, conflicting volume	1630	2019	646	1434	2002	372	727			1292		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1238	1738	0	985	1716	372	727			803		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.2			4.2		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	98	97	91	100	100	100	100			100		
cM capacity (veh/h)	102	67	843	140	69	626	866			630		
Direction, Lane #	NB 1	SE 1	SE 2	NW 1	NW 2							
Volume Total	81	646	646	451	260							
Volume Left	2	0	0	0	0							
Volume Right	77	0	0	0	35							
cSH	575	1700	1700	1700	1700							
Volume to Capacity	0.14	0.38	0.38	0.27	0.15							
Queue Length 95th (ft)	12	0	0	0	0							
Control Delay (s)	12.3	0.0	0.0	0.0	0.0							
Lane LOS	В											
Approach Delay (s)	12.3	0.0		0.0								
Approach LOS	В											
Intersection Summary												
Average Delay			0.5									
Intersection Capacity Utiliz	ation		50.9%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

4: University Ave NW & Sedgwick St NW/WTS Dwy

	۶	→	•	•	←	•	4	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			ર્ન			f)	
Traffic Volume (veh/h)	4	0	2	0	0	0	1	25	0	0	14	1
Future Volume (Veh/h)	4	0	2	0	0	0	1	25	0	0	14	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	4	0	2	0	0	0	1	28	0	0	16	1
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	46	46	16	48	47	28	17			28		
vC1, stage 1 conf vol	10	10	10	10	.,		.,					
vC2, stage 2 conf vol												
vCu, unblocked vol	46	46	16	48	47	28	17			28		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	7.1	0.0	0.2	7.1	0.0	0.2	7.1			7.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	954	845	1063	950	844	1047	1600			1585		
					044	1047	1000			1000		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	6	0	29	17								
Volume Left	4	0	1	0								
Volume Right	2	0	0	1								
cSH	988	1700	1600	1700								
Volume to Capacity	0.01	0.01	0.00	0.01								
Queue Length 95th (ft)	0	0	0	0								
Control Delay (s)	8.7	0.0	0.3	0.0								
Lane LOS	Α	Α	Α									
Approach Delay (s)	8.7	0.0	0.3	0.0								
Approach LOS	Α	Α										
Intersection Summary												
Average Delay			1.1									
Intersection Capacity Utilizat	ion		13.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

10/25/2021

5: Massachusetts Ave NW & 45th St NW

	*	×	Ĺ
	057	N III A /T	014/1
Lane Group	SET	NWT	SWL
Lane Group Flow (vph)	1490	779	30
v/c Ratio	0.54	0.23	0.02
Control Delay	1.3	0.1	0.0
Queue Delay	0.0	0.0	0.0
Total Delay	1.3	0.1	0.0
Queue Length 50th (ft)	18	0	0
Queue Length 95th (ft)	4	0	0
Internal Link Dist (ft)	150	66	207
Turn Bay Length (ft)			
Base Capacity (vph)	2739	3405	1587
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.54	0.23	0.02
	0.0.		
Intersection Summary			

5: Massachusetts Ave NW & 45th St NW

	₩.	\mathbf{x}	×	₹	Ĺ	*		
Movement	SEL	SET	NWT	NWR	SWL	SWR		
Lane Configurations		414	ħβ		W	-		
Traffic Volume (vph)	63	1278	683	18	14	13		
Future Volume (vph)	63	1278	683	18	14	13		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Grade (%)		4%	-7%		0%			
Total Lost time (s)		9.0	9.0		9.0			
Lane Util. Factor		0.95	0.95		1.00			
Frt		1.00	1.00		0.94			
Flt Protected		1.00	1.00		0.97			
Satd. Flow (prot)		3230	3406		1587			
Flt Permitted		0.85	1.00		0.97			
Satd. Flow (perm)		2739	3406		1587			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	70	1420	759	20	16	14		
RTOR Reduction (vph)	0	0	0	0	0	0		
Lane Group Flow (vph)	0	1490	779	0	30	0		
Turn Type	Perm	NA	NA		D.Pm			
Protected Phases		2!	2!					
Permitted Phases	2!				2!			
Actuated Green, G (s)		120.0	120.0		120.0			
Effective Green, g (s)		120.0	120.0		120.0			
Actuated g/C Ratio		1.00	1.00		1.00			
Clearance Time (s)		11.0	11.0		11.0			
Vehicle Extension (s)		1.0	1.0		1.0			
Lane Grp Cap (vph)		2739	3406		1587			
v/s Ratio Prot			0.23					
v/s Ratio Perm		c0.54			0.02			
v/c Ratio		0.54	0.23		0.02			
Uniform Delay, d1		0.0	0.0		0.0			
Progression Factor		1.00	1.00		1.00			
Incremental Delay, d2		0.7	0.1		0.0			
Delay (s)		0.7	0.1		0.0			
Level of Service		Α	Α		Α			
Approach Delay (s)		0.7	0.1		0.0			
Approach LOS		Α	Α		Α			
Intersection Summary								
HCM 2000 Control Delay			0.5	Н	CM 2000	Level of Service	Α	
HCM 2000 Volume to Capacit	y ratio		0.61					
Actuated Cycle Length (s)			120.0		um of lost		13.0	
Intersection Capacity Utilization	n		87.4%	IC	U Level	of Service	Е	
Analysis Period (min)			15					
! Phase conflict between lan	e groups	5.						

Critical Lane Group

6: WTS Dwy & Massachusetts Ave NW

	ሻ	ρŧ	`\	<u> </u>	£	*
Movement	NBL	NBR	SET	SER	NWL	NWT
Lane Configurations		7	↑ ↑			4
Traffic Volume (veh/h)	0	21	1283	9	22	701
Future Volume (Veh/h)	0	21	1283	9	22	701
Sign Control	Stop		Free			Free
Grade	0%		4%			-7%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0.00	23	1426	10	24	779
Pedestrians		20	1420	10	<u> </u>	110
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			INUITE			INUITE
			214			651
Upstream signal (ft)	0.75		Z14			100
pX, platoon unblocked		710			1426	
vC, conflicting volume	2258	718			1436	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	0500	740			4400	
vCu, unblocked vol	2506	718			1436	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	94			95	
cM capacity (veh/h)	17	371			469	
Direction, Lane #	NB 1	SE 1	SE 2	NW 1		
Volume Total	23	951	485	803		
Volume Left	0	0	0	24		
Volume Right	23	0	10	0		
cSH	371	1700	1700	469		
Volume to Capacity	0.06	0.56	0.29	0.05		
Queue Length 95th (ft)	5	0	0	4		
Control Delay (s)	15.3	0.0	0.0	1.6		
Lane LOS	С			Α		
Approach Delay (s)	15.3	0.0		1.6		
Approach LOS	С					
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utiliz	zation		58.0%	IC	ULevel	of Service
Analysis Period (min)			15	10	. 5 E0 VOI	C. COI VIOC
Alialysis i eliuu (Ililli)			10			

10/25/2021

7: Glover Gate/Katzen Arts Center Dwy & Massachusetts Ave NW

	×	×	₹	×	~	×
Lane Group	SET	NWT	NWR	NET	NER	SWT
Lane Group Flow (vph)	1418	770	65	30	36	29
v/c Ratio	0.71	0.68	0.08	0.25	0.24	0.15
Control Delay	12.6	11.4	1.1	52.6	7.3	42.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	11.4	1.1	52.6	7.3	42.3
Queue Length 50th (ft)	303	262	0	21	0	17
Queue Length 95th (ft)	404	389	10	52	12	46
Internal Link Dist (ft)	571	391		281		141
Turn Bay Length (ft)						
Base Capacity (vph)	1995	1136	863	120	148	188
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.68	0.08	0.25	0.24	0.15
Intersection Summary						

	₩.	\mathbf{x}	À	F	*	₹	ን	×	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		€Î}•			†	7		ર્ન	7		4	
Traffic Volume (vph)	22	1204	78	11	697	60	21	6	33	4	18	5
Future Volume (vph)	22	1204	78	11	697	60	21	6	33	4	18	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	10	10	10	10	10	10
Grade (%)		4%			-4%			-1%			5%	
Total Lost time (s)		4.0			4.0	4.0		4.0	4.0		4.0	
Lane Util. Factor		0.95			1.00	1.00		1.00	1.00		1.00	
Frpb, ped/bikes		1.00			1.00	0.86		1.00	0.67		0.98	
Flpb, ped/bikes		1.00			1.00	1.00		0.93	1.00		0.96	
Frt		0.99			1.00	0.85		1.00	0.85		0.98	
Flt Protected		1.00			1.00	1.00		0.96	1.00		0.99	
Satd. Flow (prot)		2846			1564	1130		1089	694		1417	
Flt Permitted		0.93			0.97	1.00		0.80	1.00		0.97	
Satd. Flow (perm)		2655			1516	1130		904	694		1383	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	24	1309	85	12	758	65	23	7	36	4	20	5
RTOR Reduction (vph)	0	4	0	0	0	16	0	0	31	0	4	0
Lane Group Flow (vph)	0	1414	0	0	770	49	0	30	5	0	25	0
Confl. Peds. (#/hr)	19		8	8	110	19	22		160	160		22
Confl. Bikes (#/hr)			1			. •						
Heavy Vehicles (%)	3%	3%	3%	4%	4%	4%	32%	32%	32%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	2	0	0	0	0	0	0
Turn Type	Perm	NA	-	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		6			2		. •	8			4	
Permitted Phases	6			2		2	8		8	4	•	
Actuated Green, G (s)	•	88.0		-	88.0	88.0	•	14.0	14.0	•	14.0	
Effective Green, g (s)		90.0			90.0	90.0		16.0	16.0		16.0	
Actuated g/C Ratio		0.75			0.75	0.75		0.13	0.13		0.13	
Clearance Time (s)		6.0			6.0	6.0		6.0	6.0		6.0	
Lane Grp Cap (vph)		1991			1137	847		120	92		184	
v/s Ratio Prot						V		•	· · ·			
v/s Ratio Perm		c0.53			0.51	0.04		c0.03	0.01		0.02	
v/c Ratio		0.71			0.68	0.06		0.25	0.05		0.13	
Uniform Delay, d1		8.0			7.6	3.9		46.6	45.4		45.9	
Progression Factor		1.30			1.00	1.00		1.00	1.00		1.00	
Incremental Delay, d2		1.9			3.2	0.1		4.9	1.1		1.5	
Delay (s)		12.3			10.9	4.0		51.5	46.5		47.4	
Level of Service		В			В	Α		D	D		D	
Approach Delay (s)		12.3			10.3			48.8			47.4	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	tv ratio		0.63									
Actuated Cycle Length (s)	.,		120.0	Sı	um of los	t time (s)			12.0			
Intersection Capacity Utilization	on		75.6%			of Service	<u> </u>		D			
Analysis Period (min)	-		15		, _,,,,,,,							
c Critical Lane Group												

Total Future Alternative B 2024 AM Peak

Synchro 10 Report Page 11

11/10/2021

1: Tilden St NW/46th St NW & Massachusetts Ave NW

	×	١	×	×
Lane Group	SET	SER	NWT	SWT
Lane Group Flow (vph)	1013	6	1137	131
v/c Ratio	0.49	0.01	0.56	0.64
Control Delay	6.9	3.8	4.1	62.5
Queue Delay	0.0	0.0	0.1	0.0
Total Delay	6.9	3.8	4.2	62.5
Queue Length 50th (ft)	141	1	71	95
Queue Length 95th (ft)	178	4	83	#175
Internal Link Dist (ft)	290		149	39
Turn Bay Length (ft)		90		
Base Capacity (vph)	2064	824	2034	204
Starvation Cap Reductn	0	0	183	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.49	0.01	0.61	0.64
Intersection Summary				

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

1: Tilden St NW/46th St NW & Massachusetts Ave NW

	-	\mathbf{x}	À	~	*	₹	7	*	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		† †	7		41≯						4	
Traffic Volume (vph)	0	972	6	35	1057	0	0	0	0	91	32	3
Future Volume (vph)	0	972	6	35	1057	0	0	0	0	91	32	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	12	12	12	9	9	9
Grade (%)		7%			-7%			0%			7%	
Total Lost time (s)		4.0	4.0		4.0						4.0	
Lane Util. Factor		0.95	1.00		0.95						1.00	
Frpb, ped/bikes		1.00	0.96		1.00						1.00	
Flpb, ped/bikes		1.00	1.00		1.00						1.00	
Frt		1.00	0.85		1.00						1.00	
Flt Protected		1.00	1.00		1.00						0.97	
Satd. Flow (prot)		2752	1099		3071						1285	
Flt Permitted		1.00	1.00		0.88						0.97	
Satd. Flow (perm)		2752	1099		2713						1285	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0	1012	6	36	1101	0	0	0	0	95	33	3
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	1013	6	0	1137	0	0	0	0	0	130	0
Confl. Peds. (#/hr)	7		28	28		7	7					7
Confl. Bikes (#/hr)						2						1
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	5	0	5	0	0	0	0	0	0	0
Parking (#/hr)		0	0							0	0	0
Turn Type		NA	Perm	Perm	NA					Split	NA	
Protected Phases		6			2					4	4	
Permitted Phases			6	2								
Actuated Green, G (s)		88.0	88.0		88.0						17.0	
Effective Green, g (s)		90.0	90.0		90.0						19.0	
Actuated g/C Ratio		0.75	0.75		0.75						0.16	
Clearance Time (s)		6.0	6.0		6.0						6.0	
Lane Grp Cap (vph)		2064	824		2034						203	
v/s Ratio Prot		0.37									c0.10	
v/s Ratio Perm			0.01		c0.42							
v/c Ratio		0.49	0.01		0.56						0.64	
Uniform Delay, d1		5.9	3.8		6.5						47.3	
Progression Factor		1.00	1.00		0.45						1.00	
Incremental Delay, d2		0.8	0.0		1.0						14.5	
Delay (s)		6.8	3.8		4.0						61.8	
Level of Service		Α	Α		Α						E	
Approach Delay (s)		6.8			4.0			0.0			61.8	
Approach LOS		Α			А			Α			E	
Intersection Summary												
HCM 2000 Control Delay			8.5	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capaci	ty ratio		0.57									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			10.0			
Intersection Capacity Utilization	on		79.8%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									

Total Future Alternative B 2024 PM Peak

Synchro 10 Report Page 2 1: Tilden St NW/46th St NW & Massachusetts Ave NW

11/10/2021

c Critical Lane Group

2: University Ave NW & Wesley Cir NW

	-	•	•	←	4	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f					7
Traffic Volume (veh/h)	33	26	0	0	0	29
Future Volume (Veh/h)	33	26	0	0	0	29
Sign Control	Free			Free	Yield	
Grade	5%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	37	29	0	0	0	32
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)	. 10110					
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			66		52	52
vC1, stage 1 conf vol					02	02
vC2, stage 2 conf vol						
vCu, unblocked vol			66		52	52
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					0.1	0.2
tF (s)			2.2		3.5	3.3
p0 queue free %			100		100	97
cM capacity (veh/h)			1536		957	1016
			1000		331	1010
Direction, Lane #	EB 1	NB 1				
Volume Total	66	32				
Volume Left	0	0				
Volume Right	29	32				
cSH	1700	1016				
Volume to Capacity	0.04	0.03				
Queue Length 95th (ft)	0	2				
Control Delay (s)	0.0	8.7				
Lane LOS		Α				
Approach Delay (s)	0.0	8.7				
Approach LOS		Α				
Intersection Summary						
Average Delay			2.8			
Intersection Capacity Utiliz	zation		13.3%	IC	CULevelo	of Service
Analysis Period (min)			15.070	10	. 5 25 767 6	
Alialysis i cilou (IIIIII)			10			

	ሻ	†	۴۱	Ļ	Ţ	W	•	×	\	₩	×	*
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		4						^			↑ ↑	
Traffic Volume (veh/h)	3	6	49	0	0	0	0	1063	0	0	1100	75
Future Volume (Veh/h)	3	6	49	0	0	0	0	1063	0	0	1100	75
Sign Control		Stop			Stop			Free			Free	
Grade		5%			0%			0%			-7%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	3	6	51	0	0	0	0	1107	0	0	1146	78
Pedestrians					7							
Lane Width (ft)					0.0							
Walking Speed (ft/s)					4.0							
Percent Blockage					0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								229			230	
pX, platoon unblocked	0.87	0.87	0.87	0.87	0.87					0.87		
vC, conflicting volume	1680	2338	554	1800	2299	619	1231			1107		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1477	2236	178	1615	2191	619	1231			817		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	96	83	93	100	100	100	100			100		
cM capacity (veh/h)	76	36	723	49	39	432	567			705		
Direction, Lane #	NB 1	SE 1	SE 2	NW 1	NW 2							
Volume Total	60	554	554	764	460							
Volume Left	3	0	0	0	0							
Volume Right	51	0	0	0	78							
cSH	217	1700	1700	1700	1700							
Volume to Capacity	0.28	0.33	0.33	0.45	0.27							
Queue Length 95th (ft)	27	0.00	0.00	0.40	0.27							
Control Delay (s)	27.8	0.0	0.0	0.0	0.0							
Lane LOS	D	0.0	0.0	0.0	0.0							
Approach Delay (s)	27.8	0.0		0.0								
Approach LOS	D	0.0		0.0								
Intersection Summary												
Average Delay			0.7									
Intersection Capacity Utiliza	tion		47.0%	10	CU Level	of Service			Α			
Analysis Period (min)			15		2 23.01				,,			

4: University Ave NW & Sedgwick St NW/WTS Dwy

				-		_		_			-	
	•	-	•	•	•	•	1	T		-	¥	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			ર્ન			f)	
Traffic Volume (veh/h)	5	0	1	0	0	0	1	8	0	0	21	5
Future Volume (Veh/h)	5	0	1	0	0	0	1	8	0	0	21	5
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	6	0	1	0	0	0	1	9	0	0	23	6
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	37	37	26	38	40	9	29			9		
vC1, stage 1 conf vol						-						
vC2, stage 2 conf vol												
vCu, unblocked vol	37	37	26	38	40	9	29			9		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)		0.0	V. <u> </u>		0.0							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	100	100	100	100	100	100			100		
cM capacity (veh/h)	968	855	1050	966	852	1073	1584			1611		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1	002	1010	1001			1011		
Volume Total	7	0	10	29								
Volume Left		0	1	0								
Volume Right	1	0	0	6								
cSH	979	1700	1584	1700								
Volume to Capacity	0.01	0.00	0.00	0.02								
Queue Length 95th (ft)	1	0	0	0								
Control Delay (s)	8.7	0.0	0.7	0.0								
Lane LOS	A	A	A	2.2								
Approach Delay (s)	8.7	0.0	0.7	0.0								
Approach LOS	А	Α										
Intersection Summary												
Average Delay			1.5									
Intersection Capacity Utiliza	ation		13.3%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

Total Future Alternative B 2024 PM Peak

Synchro 10 Report Page 6

11/10/2021

5: Massachusetts Ave NW & 45th St NW

	`*	×	(
Lane Group	SET	NWT	SWL
Lane Group Flow (vph)	1235	1338	74
v/c Ratio	0.45	0.39	0.05
Control Delay	0.7	0.3	0.0
Queue Delay	0.0	0.0	0.0
Total Delay	0.7	0.3	0.0
Queue Length 50th (ft)	7	0	0
Queue Length 95th (ft)	0	0	0
Internal Link Dist (ft)	150	66	258
Turn Bay Length (ft)			
Base Capacity (vph)	2716	3402	1637
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.45	0.39	0.05
Intersection Summary			

5: Massachusetts Ave NW & 45th St NW

	•	\mathbf{x}	×	₹	Ĺ	*		
Movement	SEL	SET	NWT	NWR	SWL	SWR		
Lane Configurations		414	ħβ		¥	-		
Traffic Volume (vph)	35	1076	1166	38	58	9		
Future Volume (vph)	35	1076	1166	38	58	9		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Grade (%)		4%	-7%		0%			
Total Lost time (s)		9.0	9.0		9.0			
Lane Util. Factor		0.95	0.95		1.00			
Frt		1.00	1.00		0.98			
Flt Protected		1.00	1.00		0.96			
Satd. Flow (prot)		3232	3403		1636			
Flt Permitted		0.84	1.00		0.96			
Satd. Flow (perm)		2716	3403		1636			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	39	1196	1296	42	64	10		
RTOR Reduction (vph)	0	0	0	0	0	0		
Lane Group Flow (vph)	0	1235	1338	0	74	0		
Turn Type	Perm	NA	NA		D.Pm			
Protected Phases		2!	2!					
Permitted Phases	2!				2!			
Actuated Green, G (s)		120.0	120.0		120.0			
Effective Green, g (s)		120.0	120.0		120.0			
Actuated g/C Ratio		1.00	1.00		1.00			
Clearance Time (s)		11.0	11.0		11.0			
Vehicle Extension (s)		1.0	1.0		1.0			
Lane Grp Cap (vph)		2716	3403		1636			
v/s Ratio Prot			0.39					
v/s Ratio Perm		c0.45			0.05			
v/c Ratio		0.45	0.39		0.05			
Uniform Delay, d1		0.0	0.0		0.0			
Progression Factor		1.00	1.00		1.00			
Incremental Delay, d2		0.5	0.3		0.1			
Delay (s)		0.5	0.3		0.1			
Level of Service		Α	Α		Α			
Approach Delay (s)		0.5	0.3		0.1			
Approach LOS		Α	Α		Α			
Intersection Summary								
HCM 2000 Control Delay			0.4	Н	CM 2000	Level of Service)	Α
HCM 2000 Volume to Capacit	ty ratio		0.51					
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)		13.0
Intersection Capacity Utilization	on		78.4%			of Service		D
Analysis Period (min)			15					
! Phase conflict between lar	ne groups							

c Critical Lane Group

6: WTS Dwy & Massachusetts Ave NW

	ሻ	ſ٩	×	>	•	×	
Movement	NBL	NBR	SET	SER	NWL	NWT	
Lane Configurations		7	f.			414	
Traffic Volume (veh/h)	0	54	1114	20	27	1205	
Future Volume (Veh/h)	0	54	1114	20	27	1205	
Sign Control	Stop		Free			Free	
Grade	0%		4%			-7%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	60	1238	22	30	1339	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)			219			646	
pX, platoon unblocked	0.12	0.02			0.02		
vC, conflicting volume	1978	1249			1260		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	0	0			0		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	0			11		
cM capacity (veh/h)	13	22			34		
Direction, Lane #	NB 1	SE 1	NW 1	NW 2			
Volume Total	60	1260	476	893			
Volume Left	0	0	30	0			
Volume Right	60	22	0	0			
cSH	22	1700	34	1700			
Volume to Capacity	2.67	0.74	0.89	0.53			
Queue Length 95th (ft)	191	0.7.1	78	0.00			
Control Delay (s)	1116.9	0.0	296.3	0.0			
Lane LOS	F	0.0	F	0.0			
Approach Delay (s)	1116.9	0.0	103.1				
Approach LOS	F	0.0	100.1				
•							
Intersection Summary							
Average Delay			77.4				
Intersection Capacity Utiliz	zation		69.9%	IC	U Level o	of Service	е
Analysis Period (min)			15				

Since the static HCM unsignalized analyses do not adequately account for gaps in through traffic created by the upstream traffic signals, this intersection was further analyzed using the SimTraffic analyses software.

Summary of All Intervals

Run Number	1	2	3	2811)\An&al	ysis\Synchr 5 \	TF Alt B PM2	Avg
Start Time	4:45	4:45	4:45	4:45	4:45	4:45	4:45
End Time	6:00	6:00	6:00	6:00	6:00	6:00	6:00
Total Time (min)	75	75	75	75	75	75	75
Time Recorded (min)	60	60	60	60	60	60	60
# of Intervals	2	2	2	2	2	2	2
# of Recorded Intervals	1	1	1	1	1	1	1
Vehs Entered	2515	2603	2642	2554	2554	2643	2583
Vehs Exited	2469	2549	2633	2556	2550	2600	2559
Starting Vehs	104	119	159	161	141	126	132
Ending Vehs	150	173	168	159	145	169	155
Travel Distance (mi)	1291	1342	1406	1344	1328	1371	1347
Travel Time (hr)	219.7	225.8	229.7	214.3	252.6	244.8	231.1
Total Delay (hr)	174.5	178.7	180.5	167.2	205.9	196.7	183.9
Total Stops	3677	4133	4467	3746	3561	3737	3884
Fuel Used (gal)	84.3	87.7	89.8	85.3	92.5	91.7	88.5

Interval #0 Information Seeding

Start Time	4:45
End Time	5:00
Total Time (min)	15
Volumes adjusted by Growth	Factors.

No data recorded this interval.

Interval #1 Information Recording

Start Time	5:00
End Time	6:00
Total Time (min)	60
Volumes adjusted by Growth Fa	ctors.

Run Number	1	2	3	2811)\An&l	ysis\Synchr 5 \	TF Alt B PM2	Avg
Vehs Entered	2515	2603	2642	2554	2554	2643	2583
Vehs Exited	2469	2549	2633	2556	2550	2600	2559
Starting Vehs	104	119	159	161	141	126	132
Ending Vehs	150	173	168	159	145	169	155
Travel Distance (mi)	1291	1342	1406	1344	1328	1371	1347
Travel Time (hr)	219.7	225.8	229.7	214.3	252.6	244.8	231.1
Total Delay (hr)	174.5	178.7	180.5	167.2	205.9	196.7	183.9
Total Stops	3677	4133	4467	3746	3561	3737	3884
Fuel Used (gal)	84.3	87.7	89.8	85.3	92.5	91.7	88.5

The traffic simulations were prepared by taking the average of five (5) model runs with 15-minute seed times and 60-minute run times.

The Standard at WTS
GS
SimTraffic Report
Page 1

Total Future Alternative B 2024 11/10/2021

6: WTS Dwy & Massachusetts Ave NW Performance by approach

Approach	NB	SE	NW	All
Denied Del/Veh (s)	0.1	0.0	0.0	0.0
Total Del/Veh (s)	28.3	1.2	6.7	4.9

The traffic simulations were prepared by taking the average of five (5) model runs with 15-minute seed times and 60-minute run times.

The Standard at WTS
GS
SimTraffic Report
Page 2

Total Future Alternative B 2024 11/10/2021

Intersection: 6: WTS Dwy & Massachusetts Ave NW

Movement	NB	SE	NW	NW
Directions Served	R	TR	LT	T
Maximum Queue (ft)	82	35	274	290
Average Queue (ft)	33	1	106	83
95th Queue (ft)	70	15	254	233
Link Distance (ft)	240	22	582	582
Upstream Blk Time (%)		0		
Queuing Penalty (veh)		0		
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

SimTraffic Report The Standard at WTS Page 3 GS

11/10/2021

	X	×	*	74	K
Lane Group	SET	NWT	NET	NER	SWT
Lane Group Flow (vph)	1242	1272	74	88	73
v/c Ratio	0.71	0.65	0.41	0.45	0.33
Control Delay	11.1	11.2	52.0	17.0	30.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	11.1	11.2	52.0	17.0	30.7
Queue Length 50th (ft)	219	247	52	0	28
Queue Length 95th (ft)	251	312	102	52	74
Internal Link Dist (ft)	566	391	281		141
Turn Bay Length (ft)					
Base Capacity (vph)	1746	1971	179	194	224
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.71	0.65	0.41	0.45	0.33
Intersection Summary					

1	1/	1	0	2	0	2	1

	₩.	\mathbf{x}	Ž	~	×	₹	ን	*	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		€ 1}			∱ }			ર્ન	7		4	
Traffic Volume (vph)	21	1051	96	15	1138	42	61	8	83	19	18	32
Future Volume (vph)	21	1051	96	15	1138	42	61	8	83	19	18	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	10	10	10	10	10	10	10	10	10	10
Grade (%)		4%			-4%			-1%			5%	
Total Lost time (s)		4.0			4.0			4.0	4.0		4.0	
Lane Util. Factor		0.95			0.95			1.00	1.00		1.00	
Frpb, ped/bikes		0.98			0.99			1.00	0.54		0.96	
Flpb, ped/bikes		1.00			1.00			0.94	1.00		0.89	
Frt		0.99			0.99			1.00	0.85		0.94	
Flt Protected		1.00			1.00			0.96	1.00		0.99	
Satd. Flow (prot)		2704			2997			1381	697		1221	
Flt Permitted		0.91			0.93			0.71	1.00		0.91	
Satd. Flow (perm)		2459			2781			1025	697		1132	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	22	1118	102	16	1211	45	65	9	88	20	19	34
RTOR Reduction (vph)	0	6	0	0	2	0	0	0	73	0	26	0
Lane Group Flow (vph)	0	1236	0	0	1270	0	0	74	15	0	47	0
Confl. Peds. (#/hr)	21		41	41		21	32		428	428		32
Confl. Bikes (#/hr)			3	• •		1	<u> </u>		0	0		
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	5%	5%	5%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	5	5	0	0	0	0	0	0
Parking (#/hr)	0	0	0	-	-	-	-	-		-	-	-
Turn Type	Perm	NA	-	Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	1 01111	6		1 01111	2		. 0	8		. 0	4	
Permitted Phases	6			2	_		8		8	4	•	
Actuated Green, G (s)		83.0		_	83.0			19.0	19.0	•	19.0	
Effective Green, g (s)		85.0			85.0			21.0	21.0		21.0	
Actuated g/C Ratio		0.71			0.71			0.18	0.18		0.18	
Clearance Time (s)		6.0			6.0			6.0	6.0		6.0	
Lane Grp Cap (vph)		1741			1969			179	121		198	
v/s Ratio Prot					1000			170	121		100	
v/s Ratio Perm		c0.50			0.46			c0.07	0.02		0.04	
v/c Ratio		0.71			0.64			0.41	0.13		0.24	
Uniform Delay, d1		10.3			9.4			44.0	41.8		42.6	
Progression Factor		0.84			1.00			1.00	1.00		1.00	
Incremental Delay, d2		2.3			1.6			6.9	2.2		2.8	
Delay (s)		10.9			11.0			50.9	43.9		45.4	
Level of Service		В			В			D	D		D	
Approach Delay (s)		10.9			11.0			47.1			45.4	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			14.0	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.64		500		2.1.00					
Actuated Cycle Length (s)	,		120.0	S	um of lost	t time (s)			12.0			
Intersection Capacity Utilizat	ion		73.5%			of Service	1		D			
Analysis Period (min)			15	10	5 201011	J. 331 1100						

Total Future Alternative B 2024 PM Peak

Synchro 10 Report Page 11

c Critical Lane Group

Total Future Alternative B 2024 PM Peak